Suppr超能文献

硬膜外与硬膜下皮质脑电图中扩散性去极化、扩散性抑制和负性超慢电位的相关因素

Correlates of Spreading Depolarization, Spreading Depression, and Negative Ultraslow Potential in Epidural Versus Subdural Electrocorticography.

作者信息

Dreier Jens P, Major Sebastian, Lemale Coline L, Kola Vasilis, Reiffurth Clemens, Schoknecht Karl, Hecht Nils, Hartings Jed A, Woitzik Johannes

机构信息

Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.

出版信息

Front Neurosci. 2019 Apr 24;13:373. doi: 10.3389/fnins.2019.00373. eCollection 2019.

Abstract

Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, neuronal oedema and activity loss (=depression). The SD extreme in ischemic tissue, termed 'terminal SD,' shows prolonged depolarization, in addition to a slow baseline variation called 'negative ultraslow potential' (NUP). The NUP is the largest bioelectrical signal ever recorded from the human brain and is thought to reflect the progressive recruitment of neurons into death in the wake of SD. However, it is unclear whether the NUP is a field potential or results from contaminating sensitivities of platinum electrodes. In contrast to Ag/AgCl-based electrodes in animals, platinum/iridium electrodes are the gold standard for intracranial direct current (DC) recordings in humans. Here, we investigated the full continuum including short-lasting SDs under normoxia, long-lasting SDs under systemic hypoxia, and terminal SD under severe global ischemia using platinum/iridium electrodes in rats to better understand their recording characteristics. Sensitivities for detecting SDs or NUPs were 100% for both electrode types. Nonetheless, the platinum/iridium-recorded NUP was 10 times smaller in rats than humans. The SD continuum was then further investigated by comparing subdural platinum/iridium and epidural titanium peg electrodes in patients. In seven patients with either aneurysmal subarachnoid hemorrhage or malignant hemispheric stroke, two epidural peg electrodes were placed 10 mm from a subdural strip. We found that 31/67 SDs (46%) on the subdural strip were also detected epidurally. SDs that had longer negative DC shifts and spread more widely across the subdural strip were more likely to be observed in epidural recordings. One patient displayed an SD-initiated NUP while undergoing brain death despite continued circulatory function. The NUP's amplitude was -150 mV subdurally and -67 mV epidurally. This suggests that the human NUP is a bioelectrical field potential rather than an artifact of electrode sensitivity to other factors, since the dura separates the epidural from the subdural compartment and the epidural microenvironment was unlikely changed, given that ventilation, arterial pressure and peripheral oxygen saturation remained constant during the NUP. Our data provide further evidence for the clinical value of invasive electrocorticographic monitoring, highlighting important possibilities as well as limitations of less invasive recording techniques.

摘要

扩散性去极化(SDs)的特征是跨膜离子梯度几乎完全崩溃、神经元水肿和活动丧失(即抑制)。缺血组织中的SD极端情况,即“终末期SD”,除了一种称为“负超慢电位”(NUP)的缓慢基线变化外,还表现为去极化延长。NUP是从人脑中记录到的最大生物电信号,被认为反映了在SD之后神经元逐渐走向死亡的过程。然而,尚不清楚NUP是场电位还是由铂电极的污染敏感性导致的。与动物中基于银/氯化银的电极不同,铂/铱电极是人类颅内直流电(DC)记录的金标准。在此,我们使用大鼠的铂/铱电极研究了包括常氧下的短持续时间SDs、全身缺氧下的长持续时间SDs以及严重全脑缺血下的终末期SD在内的完整连续过程,以更好地了解它们的记录特征。两种电极类型检测SDs或NUPs的敏感性均为100%。尽管如此,大鼠中铂/铱记录的NUP比人类小10倍。然后通过比较患者的硬膜下铂/铱电极和硬膜外钛钉电极,进一步研究了SD连续过程。在7例患有动脉瘤性蛛网膜下腔出血或恶性半球性卒中的患者中,将两个硬膜外钉电极放置在距硬膜下条带10毫米处。我们发现硬膜下条带上67个SDs中的31个(46%)也能在硬膜外检测到。硬膜下条带上负向DC偏移更长且扩散更广泛的SDs在硬膜外记录中更有可能被观察到。一名患者在脑死亡且循环功能持续存在的情况下出现了由SD引发的NUP。硬膜下NUP的幅度为-150 mV,硬膜外为-67 mV。这表明人类NUP是一种生物电场电位,而不是电极对其他因素敏感性的伪迹,因为硬脑膜将硬膜外腔与硬膜下腔分隔开,并且鉴于在NUP期间通气、动脉压和外周血氧饱和度保持恒定,硬膜外微环境不太可能发生变化。我们的数据为有创皮层脑电图监测的临床价值提供了进一步证据,突出了侵入性较小的记录技术的重要可能性和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd0d/6491820/8649ff30c381/fnins-13-00373-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验