Gonzalez Rodriguez Andrea, Schroeder Megan E, Walker Cierra J, Anseth Kristi S
APL Bioeng. 2018 Dec 3;2(4):046104. doi: 10.1063/1.5042430. eCollection 2018 Dec.
Valvular interstitial cells (VICs) are responsible for the maintenance of the extracellular matrix in heart valve leaflets and, in response to injury, activate from a quiescent fibroblast to a wound healing myofibroblast phenotype. Under normal conditions, myofibroblast activation is transient, but the chronic presence of activated VICs can lead to valve diseases, such as fibrotic aortic valve stenosis, for which non-surgical treatments remain elusive. We monitored the porcine VIC response to exogenously delivered fibroblast growth factor 2 (FGF-2; 100 ng/ml), transforming growth factor beta 1 (TGF-β1; 5 ng/ml), or a combination of the two while cultured within 3D matrix metalloproteinase (MMP)-degradable 8-arm 40 kDa poly(ethylene glycol) hydrogels that mimic aspects of the aortic valve. Here, we aimed to investigate VIC myofibroblast activation and subsequent contraction or the reparative wound healing response. To this end, VIC morphology, proliferation, gene expression related to the myofibroblast phenotype [alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF)] and matrix remodeling [collagens (COL1A1 and COL3) and MMP1], and contraction assays were used to quantify the cell response. Treatment with FGF-2 resulted in increased cellular proliferation while reducing the myofibroblast phenotype, as seen by decreased expression of CTGF and α-SMA, and reduced contraction relative to untreated control, suggesting that FGF-2 encourages a reparative phenotype, even in the presence of TGF-β1. TGF-β1 treatment predictably led to an increased proportion of VICs exhibiting the myofibroblast phenotype, indicated by the presence of α-SMA, increased gene expression indicative of matrix remodeling, and bulk contraction of the hydrogels. Functional contraction assays and biomechanical analyses were performed on VIC encapsulated hydrogels and porcine aortic valve tissue explants to validate these findings.
瓣膜间质细胞(VICs)负责维持心脏瓣膜小叶中的细胞外基质,并在受到损伤时从静止的成纤维细胞激活为伤口愈合的肌成纤维细胞表型。在正常情况下,肌成纤维细胞的激活是短暂的,但激活的VICs长期存在会导致瓣膜疾病,如纤维化主动脉瓣狭窄,目前尚无有效的非手术治疗方法。我们监测了猪VICs在3D基质金属蛋白酶(MMP)可降解的8臂40 kDa聚乙二醇水凝胶中培养时对外源性递送的成纤维细胞生长因子2(FGF-2;100 ng/ml)、转化生长因子β1(TGF-β1;5 ng/ml)或两者组合的反应,该水凝胶模拟了主动脉瓣的某些方面。在这里,我们旨在研究VICs的肌成纤维细胞激活以及随后的收缩或修复性伤口愈合反应。为此,通过VICs形态、增殖、与肌成纤维细胞表型相关的基因表达[α平滑肌肌动蛋白(α-SMA)和结缔组织生长因子(CTGF)]以及基质重塑[胶原蛋白(COL1A1和COL3)和MMP1],并进行收缩试验来量化细胞反应。FGF-2处理导致细胞增殖增加,同时减少肌成纤维细胞表型,表现为CTGF和α-SMA表达降低,与未处理的对照相比收缩减少,这表明FGF-2即使在存在TGF-β1的情况下也能促进修复性表型。TGF-β1处理可预测地导致表现出肌成纤维细胞表型的VICs比例增加,表现为α-SMA的存在、表明基质重塑的基因表达增加以及水凝胶的整体收缩。对包裹VICs的水凝胶和猪主动脉瓣组织外植体进行了功能收缩试验和生物力学分析,以验证这些发现。