Stark Madeline S, Kuntz Kaci L, Martens Sean J, Warren Scott C
University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Adv Mater. 2019 Jul;31(27):e1808213. doi: 10.1002/adma.201808213. Epub 2019 May 8.
Intercalation in few-layer (2D) materials is a rapidly growing area of research to develop next-generation energy-storage and optoelectronic devices, including batteries, sensors, transistors, and electrically tunable displays. Identifying fundamental differences between intercalation in bulk and 2D materials will play a key role in developing functional devices. Herein, advances in few-layer intercalation are addressed in the historical context of bulk intercalation. First, synthesis methods and structural properties are discussed, emphasizing electrochemical techniques, the mechanism of intercalation, and the formation of a solid-electrolyte interphase. To address fundamental differences between bulk and 2D materials, scaling relationships describe how intercalation kinetics, structure, and electronic and optical properties depend on material thickness and lateral dimension. Here, diffusion rates, pseudocapacity, limits of staging, and electronic structure are compared for bulk and 2D materials. Next, the optoelectronic properties are summarized, focusing on charge transfer, conductivity, and electronic structure. For energy devices, opportunities also emerge to design van der Waals heterostructures with high capacities and excellent cycling performance. Initial studies of heterostructured electrodes are compared to state-of-the-art battery materials. Finally, challenges and opportunities are presented for 2D materials in energy and optoelectronic applications, along with promising research directions in synthesis and characterization to engineer 2D materials for superior devices.
在少层(二维)材料中进行插层是一个快速发展的研究领域,旨在开发下一代储能和光电器件,包括电池、传感器、晶体管和电可调显示器。识别体材料和二维材料插层之间的根本差异将在开发功能器件中发挥关键作用。在此,少层插层的进展将在体插层的历史背景下进行探讨。首先,讨论合成方法和结构特性,重点是电化学技术、插层机制以及固体电解质界面的形成。为了阐述体材料和二维材料之间的根本差异,标度关系描述了插层动力学、结构以及电子和光学性质如何依赖于材料厚度和横向尺寸。在此,比较了体材料和二维材料的扩散速率、赝电容、分级极限和电子结构。接下来,总结光电子性质,重点是电荷转移、导电性和电子结构。对于能量器件,设计具有高容量和优异循环性能的范德华异质结构也出现了机会。将异质结构电极的初步研究与最先进的电池材料进行了比较。最后,针对二维材料在能量和光电子应用中的挑战和机遇进行了介绍,同时还介绍了在合成和表征方面有前景的研究方向,以设计用于高级器件的二维材料。