Department of Informatics, Technical University of Munich, Garching, Germany.
Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany.
Hum Mutat. 2019 Sep;40(9):1243-1251. doi: 10.1002/humu.23788. Epub 2019 Jul 29.
Pathogenic genetic variants often primarily affect splicing. However, it remains difficult to quantitatively predict whether and how genetic variants affect splicing. In 2018, the fifth edition of the Critical Assessment of Genome Interpretation proposed two splicing prediction challenges based on experimental perturbation assays: Vex-seq, assessing exon skipping, and MaPSy, assessing splicing efficiency. We developed a modular modeling framework, MMSplice, the performance of which was among the best on both challenges. Here we provide insights into the modeling assumptions of MMSplice and its individual modules. We furthermore illustrate how MMSplice can be applied in practice for individual genome interpretation, using the MMSplice VEP plugin and the Kipoi variant interpretation plugin, which are directly applicable to VCF files.
致病基因突变通常主要影响剪接。然而,定量预测遗传变异是否以及如何影响剪接仍然具有挑战性。2018 年,基因组解读的关键评估第五版提出了两个基于实验干扰测定的剪接预测挑战:Vex-seq,评估外显子跳跃,和 MaPSy,评估剪接效率。我们开发了一个模块化建模框架,MMSplice,其性能在两个挑战中都是最好的之一。在这里,我们提供了对 MMSplice 及其各个模块的建模假设的深入了解。此外,我们还说明了如何使用 MMSplice VEP 插件和 Kipoi 变体解释插件(可直接应用于 VCF 文件)在实践中对个体基因组解释进行应用,这两个插件都是基于 MMSplice 的。