Suppr超能文献

高通量剪接分析在精准医学中的未来方向。

Future directions for high-throughput splicing assays in precision medicine.

机构信息

Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.

Center for Computational Molecular Biology, Brown University, Providence, Rhode Island.

出版信息

Hum Mutat. 2019 Sep;40(9):1225-1234. doi: 10.1002/humu.23866. Epub 2019 Aug 17.

Abstract

Classification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one-third of disease-causing mutations are thought to affect pre-mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large-scale patient sequencing studies, which discover novel variants faster than they can be classified. Here, we compare the advantages and limitations of several high-throughput splicing assays aimed at mitigating this bottleneck, and describe a data set of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay (MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a challenge, in which participants submitted machine learning models to predict the splicing effects of variants in this data set. We discuss the winning submission of the challenge (MMSplice) which outperformed existing software. Finally, we highlight methods to overcome the limitations of MaPSy and similar assays, such as tissue-specific splicing, the effect of surrounding sequence context, classifying intronic variants, synthesizing large exons, and amplifying complex libraries of minigene species. Further development of these assays will greatly benefit the field of clinical genetics, which lack high-throughput methods for variant interpretation.

摘要

意义不明变异体的分类是临床遗传学中的一个具有挑战性的技术问题。由于多达三分之一的致病突变被认为会影响前体 mRNA 的剪接,因此准确分类患者测序数据中的剪接突变非常重要。一些联盟和医疗保健系统已经进行了大规模的患者测序研究,这些研究发现新的变异体的速度比它们能够被分类的速度还要快。在这里,我们比较了几种旨在缓解这一瓶颈的高通量剪接检测方法的优缺点,并描述了一个约 5000 个变体的数据集,我们使用我们的大规模并行剪接分析(MaPSy)对其进行了分析。基因组解释评估小组(CAGI)组织了一次挑战,参与者提交了机器学习模型来预测这个数据集变体的剪接效应。我们讨论了挑战的获胜提交(MMSplice),它优于现有的软件。最后,我们强调了克服 MaPSy 和类似检测方法的局限性的方法,例如组织特异性剪接、周围序列上下文的影响、分类内含子变体、合成大外显子以及扩增复杂的 minigene 文库。这些检测方法的进一步发展将极大地有益于临床遗传学领域,该领域缺乏用于变异解释的高通量方法。

相似文献

1
Future directions for high-throughput splicing assays in precision medicine.
Hum Mutat. 2019 Sep;40(9):1225-1234. doi: 10.1002/humu.23866. Epub 2019 Aug 17.
2
CAGI 5 splicing challenge: Improved exon skipping and intron retention predictions with MMSplice.
Hum Mutat. 2019 Sep;40(9):1243-1251. doi: 10.1002/humu.23788. Epub 2019 Jul 29.
3
Pathogenic variants that alter protein code often disrupt splicing.
Nat Genet. 2017 Jun;49(6):848-855. doi: 10.1038/ng.3837. Epub 2017 Apr 17.
4
Assessing predictions of the impact of variants on splicing in CAGI5.
Hum Mutat. 2019 Sep;40(9):1215-1224. doi: 10.1002/humu.23869. Epub 2019 Aug 19.
9
In vivo and In vitro methods to identify DNA sequence variants that alter RNA Splicing.
Curr Protoc Hum Genet. 2018 Apr;97(1):e60. doi: 10.1002/cphg.60. Epub 2018 Apr 26.
10
Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.
Bioinformatics. 2017 Sep 15;33(18):2943-2945. doi: 10.1093/bioinformatics/btx343.

引用本文的文献

1
Alternative splicing in stem cells and development: research progress and emerging technologies.
Cell Regen. 2025 Jun 4;14(1):20. doi: 10.1186/s13619-025-00238-w.
2
Data-driven insights to inform splice-altering variant assessment.
Am J Hum Genet. 2025 Apr 3;112(4):764-778. doi: 10.1016/j.ajhg.2025.02.012. Epub 2025 Mar 7.
3
SpliceVarDB: A comprehensive database of experimentally validated human splicing variants.
Am J Hum Genet. 2024 Oct 3;111(10):2164-2175. doi: 10.1016/j.ajhg.2024.08.002. Epub 2024 Sep 2.
4
Capturing artificial intelligence applications' value proposition in healthcare - a qualitative research study.
BMC Health Serv Res. 2024 Apr 3;24(1):420. doi: 10.1186/s12913-024-10894-4.
6
Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects.
Nat Rev Genet. 2023 Apr;24(4):251-269. doi: 10.1038/s41576-022-00556-8. Epub 2022 Dec 16.
7
Minigene-based splicing analysis and ACMG/AMP-based tentative classification of 56 ATM variants.
J Pathol. 2022 Sep;258(1):83-101. doi: 10.1002/path.5979. Epub 2022 Jul 15.
8
Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of Autism genes.
PLoS Genet. 2022 Jan 20;18(1):e1009884. doi: 10.1371/journal.pgen.1009884. eCollection 2022 Jan.
9
Functional assessment of somatic STK11 variants identified in primary human non-small cell lung cancers.
Carcinogenesis. 2021 Dec 31;42(12):1428-1438. doi: 10.1093/carcin/bgab104.

本文引用的文献

1
MMSplice: modular modeling improves the predictions of genetic variant effects on splicing.
Genome Biol. 2019 Mar 1;20(1):48. doi: 10.1186/s13059-019-1653-z.
2
Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing.
Cell. 2019 Jan 24;176(3):549-563.e23. doi: 10.1016/j.cell.2018.12.010. Epub 2019 Jan 17.
3
Predicting Splicing from Primary Sequence with Deep Learning.
Cell. 2019 Jan 24;176(3):535-548.e24. doi: 10.1016/j.cell.2018.12.015. Epub 2019 Jan 17.
4
Human-Disease Phenotype Map Derived from PheWAS across 38,682 Individuals.
Am J Hum Genet. 2019 Jan 3;104(1):55-64. doi: 10.1016/j.ajhg.2018.11.006. Epub 2018 Dec 29.
5
Trajectory of exonic variant discovery in a large clinical population: implications for variant curation.
Genet Med. 2019 Jun;21(6):1417-1424. doi: 10.1038/s41436-018-0353-5. Epub 2018 Nov 19.
6
Quantitative Activity Profile and Context Dependence of All Human 5' Splice Sites.
Mol Cell. 2018 Sep 20;71(6):1012-1026.e3. doi: 10.1016/j.molcel.2018.07.033. Epub 2018 Aug 30.
7
COSSMO: predicting competitive alternative splice site selection using deep learning.
Bioinformatics. 2018 Jul 1;34(13):i429-i437. doi: 10.1093/bioinformatics/bty244.
10
A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease.
N Engl J Med. 2018 Mar 22;378(12):1096-1106. doi: 10.1056/NEJMoa1712191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验