Department of Molecular and Cell Biology, University of California, Berkeley, California.
Helen Wills Neuroscience Institute, University of California, Berkeley, California.
Dev Dyn. 2020 Jan;249(1):46-55. doi: 10.1002/dvdy.60. Epub 2019 May 23.
Recent advances in human stem cell and genome engineering have enabled the generation of genetically defined human cellular models for brain disorders. These models can be established from a patient's own cells and can be genetically engineered to generate isogenic, controlled systems for mechanistic studies. Given the challenges of obtaining and working with primary human brain tissue, these models fill a critical gap in our understanding of normal and abnormal human brain development and provide an important complement to animal models. Recently, there has been major progress in modeling the neuropathophysiology of the canonical "mTORopathy" tuberous sclerosis complex (TSC) with such approaches. Studies using two- and three-dimensional cultures of human neurons and glia have provided new insights into how mutations in the TSC1 and TSC2 genes impact human neural development and function. Here we discuss recent progress in human stem cell-based modeling of TSC and highlight challenges and opportunities for further efforts in this area.
近年来,人类干细胞和基因组工程的进展使得能够为大脑疾病生成具有遗传定义的人类细胞模型。这些模型可以从患者自身的细胞中建立,并可以通过遗传工程生成同基因的、受控的系统,用于机制研究。鉴于获得和处理原代人脑组织的挑战,这些模型填补了我们对正常和异常人类大脑发育理解的关键空白,并为动物模型提供了重要补充。最近,使用此类方法对经典的“mTOR 病”结节性硬化症 (TSC) 的神经病理学进行建模方面取得了重大进展。使用二维和三维培养的人类神经元和神经胶质细胞的研究提供了新的见解,了解 TSC1 和 TSC2 基因突变如何影响人类神经发育和功能。在这里,我们讨论了基于人类干细胞的 TSC 建模的最新进展,并强调了该领域进一步努力的挑战和机遇。