Noda Yu, Merschjann Christoph, Tarábek Ján, Amsalem Patrick, Koch Norbert, Bojdys Michael J
Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
Angew Chem Int Ed Engl. 2019 Jul 8;58(28):9394-9398. doi: 10.1002/anie.201902314. Epub 2019 Jun 6.
Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material "beyond graphene". Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.
基于三嗪的石墨相氮化碳(TGCN)是石墨烯类二维无金属材料家族中的最新成员。尽管它被誉为电子应用领域有前景的低带隙半导体,但到目前为止,人们只了解其结构和光学性质。在此,我们结合方向相关的电学测量和时间分辨光谱来确定这种“超越石墨烯”的层状材料中的宏观电导率和微观电荷载流子迁移率。与石墨相反,TGCN沿基面的电导率比通过堆叠层的电导率低65倍。此外,我们基于观察到的载流子动力学和随机游走模拟,为这种电荷传输行为建立了一个模型。我们的综合方法为场效应晶体管(FET)和传感器应用中依赖方向的层状半导体中的本征电荷传输提供了一条途径。