Suppr超能文献

层状二维三嗪基石墨相氮化碳中的定向电荷传输

Directional Charge Transport in Layered Two-Dimensional Triazine-Based Graphitic Carbon Nitride.

作者信息

Noda Yu, Merschjann Christoph, Tarábek Ján, Amsalem Patrick, Koch Norbert, Bojdys Michael J

机构信息

Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.

Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.

出版信息

Angew Chem Int Ed Engl. 2019 Jul 8;58(28):9394-9398. doi: 10.1002/anie.201902314. Epub 2019 Jun 6.

Abstract

Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material "beyond graphene". Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.

摘要

基于三嗪的石墨相氮化碳(TGCN)是石墨烯类二维无金属材料家族中的最新成员。尽管它被誉为电子应用领域有前景的低带隙半导体,但到目前为止,人们只了解其结构和光学性质。在此,我们结合方向相关的电学测量和时间分辨光谱来确定这种“超越石墨烯”的层状材料中的宏观电导率和微观电荷载流子迁移率。与石墨相反,TGCN沿基面的电导率比通过堆叠层的电导率低65倍。此外,我们基于观察到的载流子动力学和随机游走模拟,为这种电荷传输行为建立了一个模型。我们的综合方法为场效应晶体管(FET)和传感器应用中依赖方向的层状半导体中的本征电荷传输提供了一条途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验