University of Cagliari, Cagliari, Italy.
Centro Linceo Interdisciplinare "B. Segre", Roma, Italy.
PLoS One. 2019 May 9;14(5):e0216224. doi: 10.1371/journal.pone.0216224. eCollection 2019.
This paper proposes a new quantum-like method for the binary classification applied to classical datasets. Inspired by the quantum Helstrom measurement, this innovative approach has enabled us to define a new classifier, called Helstrom Quantum Centroid (HQC). This binary classifier (inspired by the concept of distinguishability between quantum states) acts on density matrices-called density patterns-that are the quantum encoding of classical patterns of a dataset. In this paper we compare the performance of HQC with respect to twelve standard (linear and non-linear) classifiers over fourteen different datasets. The experimental results show that HQC outperforms the other classifiers when compared to the Balanced Accuracy and other statistical measures. Finally, we show that the performance of our classifier is positively correlated to the increase in the number of "quantum copies" of a pattern and the resulting tensor product thereof.
本文提出了一种新的量子分类方法,用于应用于经典数据集的二进制分类。受量子 Helstrom 测量的启发,这种创新方法使我们能够定义一种新的分类器,称为 Helstrom 量子质心(HQC)。这种二进制分类器(受量子态之间可区分性的概念启发)作用于密度矩阵——称为密度模式——这是数据集的经典模式的量子编码。在本文中,我们比较了 HQC 在 14 个不同数据集上相对于 12 个标准(线性和非线性)分类器的性能。实验结果表明,与平衡准确率和其他统计指标相比,HQC 优于其他分类器。最后,我们表明,我们的分类器的性能与模式的“量子副本”数量的增加及其张量积呈正相关。