Suppr超能文献

用于扩散扭曲校正的合成 b0(Synb0-DisCo)。

Synthesized b0 for diffusion distortion correction (Synb0-DisCo).

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States of America.

Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN, United States of America.

出版信息

Magn Reson Imaging. 2019 Dec;64:62-70. doi: 10.1016/j.mri.2019.05.008. Epub 2019 May 7.

Abstract

Diffusion magnetic resonance images typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may affect the geometric fidelity of the reconstructed volume and cause mismatches with anatomical images. State-of-the art susceptibility correction (for example, FSL's TOPUP algorithm) typically requires data acquired twice with reverse phase encoding directions, referred to as blip-up blip-down acquisitions, in order to estimate an undistorted volume. Unfortunately, not all imaging protocols include a blip-up blip-down acquisition, and cannot take advantage of the state-of-the art susceptibility and motion correction capabilities. In this study, we aim to enable TOPUP-like processing with historical and/or limited diffusion imaging data that include only a structural image and single blip diffusion image. We utilize deep learning to synthesize an undistorted non-diffusion weighted image from the structural image, and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach (named Synb0-DisCo) and show that our distortion correction process results in better matching of the geometry of undistorted anatomical images, reduces variation in diffusion modeling, and is practically equivalent to having both blip-up and blip-down non-diffusion weighted images.

摘要

弥散磁共振图像通常会因磁化率引起的离频场而产生空间扭曲,这可能会影响重建体积的几何保真度,并导致与解剖图像不匹配。最先进的磁化率校正(例如,FSL 的 TOPUP 算法)通常需要两次采集相位编码方向相反的数据,称为双反转采集,以便估计未失真的体积。不幸的是,并非所有成像协议都包括双反转采集,因此无法利用最先进的磁化率和运动校正功能。在这项研究中,我们旨在使历史数据和/或仅包含结构图像和单次双反转扩散图像的有限扩散成像数据能够进行类似于 TOPUP 的处理。我们利用深度学习从结构图像中合成未失真的非弥散加权图像,并使用未失真的合成图像作为解剖目标进行失真校正。我们评估了这种方法(命名为 Synb0-DisCo)的效果,并表明我们的失真校正过程可以更好地匹配未失真解剖图像的几何形状,减少扩散建模的变化,并且在实际效果上相当于同时具有双反转和非双反转的非弥散加权图像。

相似文献

1
Synthesized b0 for diffusion distortion correction (Synb0-DisCo).用于扩散扭曲校正的合成 b0(Synb0-DisCo)。
Magn Reson Imaging. 2019 Dec;64:62-70. doi: 10.1016/j.mri.2019.05.008. Epub 2019 May 7.
8
Deep flow-net for EPI distortion estimation.深度流网络用于 EPI 失真估计。
Neuroimage. 2020 Aug 15;217:116886. doi: 10.1016/j.neuroimage.2020.116886. Epub 2020 May 7.

引用本文的文献

1
Superficial and deep white matter abnormalities in temporal lobe epilepsy.颞叶癫痫中的浅层和深层白质异常
Brain Commun. 2025 Aug 19;7(5):fcaf305. doi: 10.1093/braincomms/fcaf305. eCollection 2025.

本文引用的文献

1
Image Synthesis in Multi-Contrast MRI With Conditional Generative Adversarial Networks.多对比度 MRI 图像合成的条件生成对抗网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2375-2388. doi: 10.1109/TMI.2019.2901750. Epub 2019 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验