Suppr超能文献

膜电压是影响神经元中相关离子通道表达的直接反馈信号。

Membrane Voltage Is a Direct Feedback Signal That Influences Correlated Ion Channel Expression in Neurons.

机构信息

University of Missouri, Columbia, Division of Biological Sciences, Columbia, MO 65211, USA; The University of North Carolina at Greensboro, Department of Biology, Greensboro, NC 27402, USA.

University of Missouri, Columbia, Division of Biological Sciences, Columbia, MO 65211, USA.

出版信息

Curr Biol. 2019 May 20;29(10):1683-1688.e2. doi: 10.1016/j.cub.2019.04.008. Epub 2019 May 9.

Abstract

The number and type of ion channels present in the membrane determines the electrophysiological function of every neuron. In many species, stereotyped output of neurons often persists for years [1], and ion channel dysregulation can change these properties to cause severe neurological disorders [2-4]. Thus, a fundamental question is how do neurons coordinate channel expression to uphold their firing patterns over long timescales [1, 5]? One major hypothesis purports that neurons homeostatically regulate their ongoing activity through mechanisms that link membrane voltage to expression relationships among ion channels [6-10]. However, experimentally establishing this feedback loop for the control of expression relationships has been a challenge: manipulations that aim to test for voltage feedback invariably disrupt trophic signaling from synaptic transmission and neuromodulation in addition to activity [9, 11, 12]. Further, neuronal activity often relies critically on these chemical mediators, obscuring the contribution of voltage activity of the membrane per se in forming the channel relationships that determine neuronal output [6, 13]. To resolve this, we isolated an identifiable neuron in crustaceans and then either kept this neuron silent or used a long-term voltage clamp protocol to artificially maintain activity. We found that physiological voltage activity-independent of all known forms of synaptic and neuromodulatory feedback-maintains most channel mRNA relationships, while metabotropic influences may play a relatively smaller role. Thus, ion channel relationships likely needed to maintain neuronal identity are actively and continually regulated at least in part at the level of channel mRNAs through feedback by membrane voltage.

摘要

细胞膜中存在的离子通道的数量和类型决定了每个神经元的电生理功能。在许多物种中,神经元的定型输出常常持续多年[1],而离子通道失调会改变这些特性,导致严重的神经紊乱[2-4]。因此,一个基本问题是神经元如何协调通道表达,以维持其在长时间尺度上的发射模式[1,5]?一个主要假说认为,神经元通过将膜电压与离子通道表达关系联系起来的机制,对其持续活动进行自我调节[6-10]。然而,实验上建立这种反馈回路来控制表达关系一直是一个挑战:旨在测试电压反馈的操作不可避免地会破坏突触传递和神经调制的营养信号,除了活动[9,11,12]。此外,神经元活动通常严重依赖于这些化学介质,掩盖了膜本身的电压活动在形成决定神经元输出的通道关系中的贡献[6,13]。为了解决这个问题,我们在甲壳类动物中分离出一个可识别的神经元,然后使这个神经元保持沉默,或者使用长期电压钳制协议人为地维持其活动。我们发现,生理电压活动——独立于所有已知的突触和神经调制反馈形式——维持着大多数通道 mRNA 关系,而代谢型影响可能起相对较小的作用。因此,至少部分通过膜电压的反馈,离子通道关系可能需要维持神经元的身份,积极和持续地调节至少在通道 mRNA 水平上。

相似文献

6
Neuromodulation of vertebrate motor neuron membrane properties.脊椎动物运动神经元膜特性的神经调节
Curr Opin Neurobiol. 1992 Dec;2(6):770-5. doi: 10.1016/0959-4388(92)90132-5.

引用本文的文献

本文引用的文献

1
Breathing matters.呼吸至关重要。
Nat Rev Neurosci. 2018 Jun;19(6):351-367. doi: 10.1038/s41583-018-0003-6.
5
Molecular mechanisms of epilepsy.癫痫的分子机制
Nat Neurosci. 2015 Mar;18(3):367-72. doi: 10.1038/nn.3947. Epub 2015 Feb 24.
9
Correlations in ion channel expression emerge from homeostatic tuning rules.离子通道表达的相关性源于稳态调节规则。
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2645-54. doi: 10.1073/pnas.1309966110. Epub 2013 Jun 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验