University of Missouri, Columbia, Division of Biological Sciences, Columbia, MO 65211, USA; The University of North Carolina at Greensboro, Department of Biology, Greensboro, NC 27402, USA.
University of Missouri, Columbia, Division of Biological Sciences, Columbia, MO 65211, USA.
Curr Biol. 2019 May 20;29(10):1683-1688.e2. doi: 10.1016/j.cub.2019.04.008. Epub 2019 May 9.
The number and type of ion channels present in the membrane determines the electrophysiological function of every neuron. In many species, stereotyped output of neurons often persists for years [1], and ion channel dysregulation can change these properties to cause severe neurological disorders [2-4]. Thus, a fundamental question is how do neurons coordinate channel expression to uphold their firing patterns over long timescales [1, 5]? One major hypothesis purports that neurons homeostatically regulate their ongoing activity through mechanisms that link membrane voltage to expression relationships among ion channels [6-10]. However, experimentally establishing this feedback loop for the control of expression relationships has been a challenge: manipulations that aim to test for voltage feedback invariably disrupt trophic signaling from synaptic transmission and neuromodulation in addition to activity [9, 11, 12]. Further, neuronal activity often relies critically on these chemical mediators, obscuring the contribution of voltage activity of the membrane per se in forming the channel relationships that determine neuronal output [6, 13]. To resolve this, we isolated an identifiable neuron in crustaceans and then either kept this neuron silent or used a long-term voltage clamp protocol to artificially maintain activity. We found that physiological voltage activity-independent of all known forms of synaptic and neuromodulatory feedback-maintains most channel mRNA relationships, while metabotropic influences may play a relatively smaller role. Thus, ion channel relationships likely needed to maintain neuronal identity are actively and continually regulated at least in part at the level of channel mRNAs through feedback by membrane voltage.
细胞膜中存在的离子通道的数量和类型决定了每个神经元的电生理功能。在许多物种中,神经元的定型输出常常持续多年[1],而离子通道失调会改变这些特性,导致严重的神经紊乱[2-4]。因此,一个基本问题是神经元如何协调通道表达,以维持其在长时间尺度上的发射模式[1,5]?一个主要假说认为,神经元通过将膜电压与离子通道表达关系联系起来的机制,对其持续活动进行自我调节[6-10]。然而,实验上建立这种反馈回路来控制表达关系一直是一个挑战:旨在测试电压反馈的操作不可避免地会破坏突触传递和神经调制的营养信号,除了活动[9,11,12]。此外,神经元活动通常严重依赖于这些化学介质,掩盖了膜本身的电压活动在形成决定神经元输出的通道关系中的贡献[6,13]。为了解决这个问题,我们在甲壳类动物中分离出一个可识别的神经元,然后使这个神经元保持沉默,或者使用长期电压钳制协议人为地维持其活动。我们发现,生理电压活动——独立于所有已知的突触和神经调制反馈形式——维持着大多数通道 mRNA 关系,而代谢型影响可能起相对较小的作用。因此,至少部分通过膜电压的反馈,离子通道关系可能需要维持神经元的身份,积极和持续地调节至少在通道 mRNA 水平上。