O'Bryant Sid E, Edwards Melissa, Zhang Fan, Johnson Leigh A, Hall James, Kuras Yuliya, Scherzer Clemens R
Institute for Translational Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA.
Alzheimers Dement (Amst). 2019 May 2;11:374-382. doi: 10.1016/j.dadm.2019.03.001. eCollection 2019 Dec.
We sought to determine if our previously validated proteomic profile for detecting Alzheimer's disease would detect Parkinson's disease (PD) and distinguish PD from other neurodegenerative diseases.
Plasma samples were assayed from 150 patients of the Harvard Biomarkers Study (PD, n = 50; other neurodegenerative diseases, n = 50; healthy controls, n = 50) using electrochemiluminescence and Simoa platforms.
The first step proteomic profile distinguished neurodegenerative diseases from controls with a diagnostic accuracy of 0.94. The second step profile distinguished PD cases from other neurodegenerative diseases with a diagnostic accuracy of 0.98. The proteomic profile differed in step 1 versus step 2, suggesting that a multistep proteomic profile algorithm to detecting and distinguishing between neurodegenerative diseases may be optimal.
These data provide evidence of the potential use of a multitiered blood-based proteomic screening method for detecting individuals with neurodegenerative disease and then distinguishing PD from other neurodegenerative diseases.
我们试图确定我们之前验证过的用于检测阿尔茨海默病的蛋白质组学特征是否能检测出帕金森病(PD),并将PD与其他神经退行性疾病区分开来。
使用电化学发光和Simoa平台对哈佛生物标志物研究的150名患者(PD患者50例;其他神经退行性疾病患者50例;健康对照50例)的血浆样本进行检测。
第一步蛋白质组学特征以0.94的诊断准确率将神经退行性疾病与对照区分开来。第二步特征以0.98的诊断准确率将PD病例与其他神经退行性疾病区分开来。第一步和第二步的蛋白质组学特征有所不同,这表明用于检测和区分神经退行性疾病的多步骤蛋白质组学特征算法可能是最佳的。
这些数据为基于血液的多层蛋白质组学筛查方法在检测神经退行性疾病患者并将PD与其他神经退行性疾病区分开来方面的潜在应用提供了证据。