Suppr超能文献

基于张量分解和非局部均值的光谱 CT 图像去噪。

Tensor decomposition and non-local means based spectral CT image denoising.

机构信息

Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA.

PingAn Technology, US Research Lab, Palo Alto, CA, USA.

出版信息

J Xray Sci Technol. 2019;27(3):397-416. doi: 10.3233/XST-180413.

Abstract

BACKGROUNDAs one type of the state-of-the-art detectors, photon counting detectors are used in spectral computed tomography (CT) to classify the received photons into several energy channels and generate multichannel projections simultaneously. However, FBP reconstructed images contain severe noise due to the low photon counts in each energy channel.OBJECTIVEA spectral CT image denoising method based on tensor-decomposition and non-local means (TDNLM) is proposed.METHODSIn a CT image, it is widely accepted that there exists self-similarity over the spatial domain. In addition, because a multichannel CT image is obtained from the same object at different energies, images among different channels are highly correlated. Motivated by these two characteristics of the spectral CT images, tensor decomposition and non-local means are employed to recover fine structures in spectral CT images. Moreover, images in all energy channels are added together to form a high signal-to-noise ratio image, which is applied to encourage the signal preservation of the TDNLM. The combination of TD, NLM and the guidance of a high-quality image enhances the low-dose spectral CT, and a parameter selection strategy is designed to achieve the optimal image quality.RESULTSThe effectiveness of the developed algorithm is validated on both numerical simulations and realistic preclinical applications. The root mean square error (RMSE) and the structural similarity (SSIM) are used to quantitatively assess the image quality. The proposed method successfully restored high-quality images (average RMSE=0.0217 cm-1 and SSIM=0.987) from noisy spectral CT images (average RMSE=0.225 cm-1 and SSIM=0.633). In addition, RMSE of each decomposed material component is also remarkably reduced. Compared to the state-of-the-art iterative spectral CT reconstruction algorithms, the proposed method achieves comparable performance with dramatically reduced computational cost, resulting in a speedup of >50.CONCLUSIONSThe outstanding denoising performance, the high computational efficiency and the adaptive parameter selection strategy make the proposed method practical for spectral CT applications.

摘要

背景

作为最先进的探测器之一,光子计数探测器用于光谱 CT 中,将接收到的光子分为若干能量通道,并同时生成多通道投影。然而,由于每个能量通道中的光子计数较低,FBP 重建图像包含严重的噪声。

目的

提出一种基于张量分解和非局部均值(TDNLM)的光谱 CT 图像去噪方法。

方法

在 CT 图像中,广泛接受的是在空间域中存在自相似性。此外,由于多通道 CT 图像是从同一物体在不同能量下获得的,因此不同通道之间的图像高度相关。受光谱 CT 图像的这两个特征的启发,使用张量分解和非局部均值来恢复光谱 CT 图像中的精细结构。此外,将所有能量通道中的图像相加在一起以形成高信噪比图像,该图像用于鼓励 TDNLM 的信号保留。TD、NLM 和高质量图像的指导相结合增强了低剂量光谱 CT,并设计了一种参数选择策略以实现最佳图像质量。

结果

该算法在数值模拟和真实的临床前应用中均得到了验证。均方根误差(RMSE)和结构相似性(SSIM)用于定量评估图像质量。该方法成功地从噪声光谱 CT 图像(平均 RMSE=0.225 cm-1,SSIM=0.633)中恢复出高质量的图像(平均 RMSE=0.0217 cm-1,SSIM=0.987)。此外,每个分解材料分量的 RMSE 也显著降低。与最先进的迭代光谱 CT 重建算法相比,该方法具有相当的性能,但计算成本却大大降低,速度提高了>50 倍。

结论

出色的去噪性能、高计算效率和自适应参数选择策略使该方法在光谱 CT 应用中具有实用性。

相似文献

1
Tensor decomposition and non-local means based spectral CT image denoising.
J Xray Sci Technol. 2019;27(3):397-416. doi: 10.3233/XST-180413.
2
Iterative image-domain decomposition for dual-energy CT.
Med Phys. 2014 Apr;41(4):041901. doi: 10.1118/1.4866386.
4
A neural network-based method for spectral distortion correction in photon counting x-ray CT.
Phys Med Biol. 2016 Aug 21;61(16):6132-53. doi: 10.1088/0031-9155/61/16/6132. Epub 2016 Jul 29.
5
Framelet tensor sparsity with block matching for spectral CT reconstruction.
Med Phys. 2022 Apr;49(4):2486-2501. doi: 10.1002/mp.15529. Epub 2022 Mar 13.
6
Locally linear transform based three-dimensional gradient -norm minimization for spectral CT reconstruction.
Med Phys. 2020 Oct;47(10):4810-4826. doi: 10.1002/mp.14420. Epub 2020 Aug 25.
7
Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction.
Quant Imaging Med Surg. 2023 Feb 1;13(2):610-630. doi: 10.21037/qims-22-235. Epub 2022 Dec 8.

引用本文的文献

1
Tensor Methods in Biomedical Image Analysis.
J Med Signals Sens. 2024 Jul 10;14:16. doi: 10.4103/jmss.jmss_55_23. eCollection 2024.
2
CT image denoising methods for image quality improvement and radiation dose reduction.
J Appl Clin Med Phys. 2024 Feb;25(2):e14270. doi: 10.1002/acm2.14270. Epub 2024 Jan 19.
3
Multi-energy CT material decomposition using graph model improved CNN.
Med Biol Eng Comput. 2024 Apr;62(4):1213-1228. doi: 10.1007/s11517-023-02986-w. Epub 2023 Dec 30.
4
Impact of Noise Level on the Accuracy of Automated Measurement of CT Number Linearity on ACR CT and Computational Phantoms.
J Biomed Phys Eng. 2023 Aug 1;13(4):353-362. doi: 10.31661/jbpe.v0i0.2302-1599. eCollection 2023 Aug.
5
A review on Deep Learning approaches for low-dose Computed Tomography restoration.
Complex Intell Systems. 2023;9(3):2713-2745. doi: 10.1007/s40747-021-00405-x. Epub 2021 May 30.
6
InNetGAN: Inception Network-Based Generative Adversarial Network for Denoising Low-Dose Computed Tomography.
J Healthc Eng. 2021 Sep 10;2021:9975762. doi: 10.1155/2021/9975762. eCollection 2021.

本文引用的文献

1
Low-dose spectral CT reconstruction using image gradient -norm and tensor dictionary.
Appl Math Model. 2018 Nov;63:538-557. doi: 10.1016/j.apm.2018.07.006. Epub 2018 Jul 21.
2
Spectral CT Reconstruction with Image Sparsity and Spectral Mean.
IEEE Trans Comput Imaging. 2016 Dec;2(4):510-523. doi: 10.1109/TCI.2016.2609414. Epub 2016 Sep 14.
4
Discriminative feature representation: an effective postprocessing solution to low dose CT imaging.
Phys Med Biol. 2017 Mar 21;62(6):2103-2131. doi: 10.1088/1361-6560/aa5c24. Epub 2017 Feb 17.
5
An adaptive reconstruction algorithm for spectral CT regularized by a reference image.
Phys Med Biol. 2016 Dec 21;61(24):8699-8719. doi: 10.1088/1361-6560/61/24/8699. Epub 2016 Nov 23.
6
Tensor-Based Dictionary Learning for Spectral CT Reconstruction.
IEEE Trans Med Imaging. 2017 Jan;36(1):142-154. doi: 10.1109/TMI.2016.2600249. Epub 2016 Aug 12.
8
Spectral CT Image Restoration via an Average Image-Induced Nonlocal Means Filter.
IEEE Trans Biomed Eng. 2016 May;63(5):1044-1057. doi: 10.1109/TBME.2015.2476371. Epub 2015 Sep 3.
9
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications.
Radiology. 2015 Sep;276(3):637-53. doi: 10.1148/radiol.2015142631.
10
Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: An adaptive approach.
Comput Med Imaging Graph. 2015 Jul;43:26-35. doi: 10.1016/j.compmedimag.2015.02.008. Epub 2015 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验