Génomique Métabolique, Genoscope , Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay , 91057 , Evry , France.
Institut de Chimie des Substances Naturelles, CNRS - UPR , 2301 Bâtiment 27, 1 avenue de la Terrasse , 91198 Gif-sur-Yvette Cedex, France.
Environ Sci Technol. 2019 Jun 4;53(11):6133-6143. doi: 10.1021/acs.est.8b06305. Epub 2019 May 22.
Production and use of the insecticide chlordecone has caused long-term environmental pollution in the James River area and the French West Indies (FWI) that has resulted in acute human-health problems and a social crisis. High levels of chlordecone in FWI soils, even after its ban decades ago, and the absence of detection of transformation products (TPs), have suggested that chlordecone is virtually nonbiodegradable in the environment. Here, we investigated laboratory biodegradation, consisting of bacterial liquid cultures and microcosms inoculated with FWI soils, using a dual nontargeted GC-MS and LC-HRMS approach. In addition to previously reported, partly characterized hydrochlordecones and polychloroindenes (families A and B), we discovered 14 new chlordecone TPs, assigned to four families (B, C, D, and E). Organic synthesis and NMR analyses allowed us to achieve the complete structural elucidation of 19 TPs. Members of TP families A, B, C, and E were detected in soil, sediment, and water samples from Martinique and include 17 TPs not initially found in commercial chlordecone formulations. 2,4,5,6,7-Pentachloroindene was the most prominent TP, with levels similar to those of chlordecone. Overall, our results clearly show that chlordecone pollution extends beyond the parent chlordecone molecule and includes a considerable number of previously undetected TPs. Structural diversity of the identified TPs illustrates the complexity of chlordecone degradation in the environment and raises the possibility of extensive worldwide pollution of soil and aquatic ecosystems by chlordecone TPs.
杀虫剂氯丹的生产和使用在詹姆斯河地区和法属西印度群岛造成了长期的环境污染,导致了严重的人类健康问题和社会危机。尽管几十年前就已经禁止使用氯丹,但法属西印度群岛土壤中的氯丹含量仍然很高,而且没有检测到转化产物(TPs),这表明氯丹在环境中几乎不可生物降解。在这里,我们使用双重非靶向 GC-MS 和 LC-HRMS 方法,研究了包括细菌液体培养物和接种法属西印度群岛土壤的微宇宙在内的实验室生物降解。除了先前报道的部分特征化的氢氯丹和多氯茚(A 组和 B 组)之外,我们还发现了 14 种新的氯丹 TPs,分为四个家族(B、C、D 和 E)。有机合成和 NMR 分析使我们能够完成 19 种 TPs 的完整结构阐明。TP 家族 A、B、C 和 E 的成员在马提尼克岛的土壤、沉积物和水样中均有检测到,其中包括在最初的商业氯丹配方中未发现的 17 种 TPs。2,4,5,6,7-五氯茚是最主要的 TP,其水平与氯丹相似。总的来说,我们的结果清楚地表明,氯丹污染不仅限于母体氯丹分子,还包括大量以前未检测到的 TPs。所鉴定的 TPs 的结构多样性说明了环境中氯丹降解的复杂性,并有可能导致氯丹 TPs 在全球范围内广泛污染土壤和水生生态系统。