Suppr超能文献

用于可穿戴应用中热电发电机的N型碲化铋纳米复合材料优化

N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications.

作者信息

Nozariasbmarz Amin, Krasinski Jerzy S, Vashaee Daryoosh

机构信息

Department of Electrical and Computer Engineering, Monteith Research Center, North Carolina State University, Raleigh, NC 27606, USA.

Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

Materials (Basel). 2019 May 10;12(9):1529. doi: 10.3390/ma12091529.

Abstract

Thermoelectric materials could play a crucial role in the future of wearable electronic devices. They can continuously generate electricity from body heat. For efficient operation in wearable systems, in addition to a high thermoelectric figure of merit, , the thermoelectric material must have low thermal conductivity and a high Seebeck coefficient. In this study, we successfully synthesized high-performance nanocomposites of n-type BiTeSe, optimized especially for body heat harvesting and power generation applications. Different techniques such as dopant optimization, glass inclusion, microwave radiation in a single mode microwave cavity, and sintering conditions were used to optimize the temperature-dependent thermoelectric properties of BiTeSe. The effects of these techniques were studied and compared with each other. A room temperature thermal conductivity as low as 0.65 W/mK and high Seebeck coefficient of -297 μV/K were obtained for a wearable application, while maintaining a high thermoelectric figure of merit, , of 0.87 and an average of 0.82 over the entire temperature range of 25 °C to 225 °C, which makes the material appropriate for a variety of power generation applications.

摘要

热电材料在可穿戴电子设备的未来发展中可能发挥关键作用。它们能够从人体热量中持续发电。为了在可穿戴系统中高效运行,除了具有高热电优值外,热电材料还必须具有低导热率和高塞贝克系数。在本研究中,我们成功合成了高性能的n型BiTeSe纳米复合材料,特别针对人体热量收集和发电应用进行了优化。采用了不同的技术,如掺杂优化、玻璃包裹、单模微波腔中的微波辐射以及烧结条件,来优化BiTeSe的温度依赖性热电性能。对这些技术的效果进行了研究并相互比较。对于可穿戴应用,获得了低至0.65 W/mK的室温热导率和-297 μV/K的高塞贝克系数,同时在25°C至225°C的整个温度范围内保持了0.87的高热电优值以及0.82的平均值,这使得该材料适用于各种发电应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e6/6539223/afcf91b5aac1/materials-12-01529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验