Suppr超能文献

基于多参数 MRI 的放射组学特征鉴别临床显著和不显著前列腺癌:机器学习方法的交叉验证。

Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method.

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China.

Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning Province, PR China.

出版信息

Eur J Radiol. 2019 Jun;115:16-21. doi: 10.1016/j.ejrad.2019.03.010. Epub 2019 Mar 15.

Abstract

PURPOSE

To evaluate the performance of a multi-parametric MRI (mp-MRI)-based radiomics signature for discriminating between clinically significant prostate cancer (csPCa) and insignificant PCa (ciPCa).

MATERIALS AND METHODS

Two hundred and eighty patients with pathology-proven PCa were enrolled and were randomly divided into training and test cohorts. Eight hundred and nineteen radiomics features were extracted from mp-MRI for each patient. The minority group in the training cohort was balanced via the synthetic minority over-sampling technique (SMOTE) method. We used minimum-redundancy maximum-relevance (mRMR) selection and the LASSO algorithm for feature selection and radiomics signature building. The classification performance of the radiomics signature for csPCa and ciPCa was evaluated by receiver operating characteristic curve analysis in the training and test cohorts.

RESULTS

Nine features were selected for the radiomics signature building. Significant differences in the radiomics signature existed between the csPCa and ciPCa groups in both the training and test cohorts (p < 0.01 for both). The AUC, sensitivity and specificity of the radiomics signature were 0.872 (95% CI: 0.823-0.921), 0.883, and 0.753, respectively, in the training cohort, and 0.823 (95% CI: 0.669-0.976), 0.841, and 0.727, respectively, in the test cohort.

CONCLUSION

Mp-MRI-based radiomics signature have the potential to noninvasively discriminate between csPCa and ciPCa.

摘要

目的

评估基于多参数 MRI(mp-MRI)的放射组学特征在鉴别临床显著前列腺癌(csPCa)与非显著前列腺癌(ciPCa)中的性能。

材料与方法

共纳入 280 例经病理证实的前列腺癌患者,随机分为训练集和测试集。对每位患者的 mp-MRI 提取 819 个放射组学特征。通过合成少数类过采样技术(SMOTE)方法平衡训练集中的少数群体。我们使用最小冗余最大相关性(mRMR)选择和 LASSO 算法进行特征选择和放射组学特征构建。在训练集和测试集中,通过受试者工作特征曲线分析评估放射组学特征对 csPCa 和 ciPCa 的分类性能。

结果

共选择了 9 个特征用于构建放射组学特征。在训练集和测试集中,csPCa 与 ciPCa 组之间的放射组学特征均存在显著差异(均 p < 0.01)。放射组学特征在训练集的 AUC、敏感性和特异性分别为 0.872(95%CI:0.823-0.921)、0.883 和 0.753,在测试集的 AUC、敏感性和特异性分别为 0.823(95%CI:0.669-0.976)、0.841 和 0.727。

结论

基于 mp-MRI 的放射组学特征具有潜在的非侵入性鉴别 csPCa 与 ciPCa 的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验