人类多能干细胞衍生的心脏祖细胞的表观遗传启动加速心肌细胞成熟。
Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation.
机构信息
Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
出版信息
Stem Cells. 2019 Jul;37(7):910-923. doi: 10.1002/stem.3021. Epub 2019 May 14.
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs. pIC priming did not alter the expression of cell surface markers for CPCs (>80% KDR+/PDGFRα+), expression of common cardiac transcription factors, or final purity of differentiated hPSC-CMs (∼90%). However, CPC differentiation in basal medium revealed that pIC priming resulted in hPSC-CMs with enhanced maturity manifested by increased cell size, greater contractility, faster electrical upstrokes, increased oxidative metabolism, and more mature sarcomeric structure and composition. To investigate the mechanisms of CPC priming, RNAseq revealed that cardiac progenitor-stage pIC modulated early Notch signaling and cardiomyogenic transcriptional programs. Chromatin immunoprecipitation of CPCs showed that pIC treatment increased deposition of the H3K9ac activating epigenetic mark at core promoters of cardiac myofilament genes and the Notch ligand, JAG1. Inhibition of Notch signaling blocked the effects of pIC on differentiation and cardiomyocyte maturation. Furthermore, primed CPCs showed more robust formation of hPSC-CMs grafts when transplanted to the NSGW mouse kidney capsule. Overall, epigenetic modulation of CPCs with pIC accelerates cardiomyocyte maturation enabling basic research applications and potential therapeutic uses. Stem Cells 2019;37:910-923.
人多能干细胞衍生的心肌细胞(hPSC-CMs)表现出一种胎儿表型,限制了其在体外和治疗中的应用。促进心肌细胞成熟的策略集中在对分化的 hPSC-CMs 的干预上,但本研究测试了用聚肌苷酸-聚胞苷酸(pIC)对早期心脏祖细胞(CPCs)进行启动以加速心肌细胞成熟。使用具有定义的小分子 Wnt 时间调节的单层分化方案从 hPSC 中分化 CPCs,并在早期 CPC 形成时添加 pIC。pIC 启动不会改变 CPC 表面标志物的表达(>80%KDR+/PDGFRα+)、共同心脏转录因子的表达或分化的 hPSC-CMs 的最终纯度(约 90%)。然而,在基础培养基中进行 CPC 分化表明,pIC 启动导致 hPSC-CMs 的成熟度提高,表现为细胞尺寸增大、收缩性增强、电激发更快、氧化代谢增加以及更成熟的肌节结构和组成。为了研究 CPC 启动的机制,RNAseq 显示心脏祖细胞阶段的 pIC 调节了早期 Notch 信号和心肌生成转录程序。CPCs 的染色质免疫沉淀显示,pIC 处理增加了心脏肌丝基因和 Notch 配体 JAG1 的核心启动子上的 H3K9ac 激活表观遗传标记的沉积。Notch 信号抑制阻断了 pIC 对分化和心肌细胞成熟的影响。此外,当移植到 NSGW 小鼠肾囊时,启动的 CPCs 显示出更强大的 hPSC-CMs 移植物形成。总的来说,pIC 对 CPC 的表观遗传调节加速了心肌细胞的成熟,使其能够用于基础研究应用和潜在的治疗用途。干细胞 2019;37:910-923。