Suppr超能文献

基于物理推断的二级结构和进化衍生突变耦合的集成深度学习预测 RNA 距离接触图谱。

Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling.

机构信息

Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia.

Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.

出版信息

Bioinformatics. 2022 Aug 10;38(16):3900-3910. doi: 10.1093/bioinformatics/btac421.

Abstract

MOTIVATION

Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly accurate prediction of distance-based contact maps of proteins.

RESULTS

Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences (Neff > 50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D structure prediction.

AVAILABILITY AND IMPLEMENTATION

SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

最近,AlphaFold2 实现了对结构预测关键评估 (CASP14) 中大多数蛋白质的高实验精度。这让人希望有一天,我们也许可以为那些具有类似蛋白质结构预测同等重要性和实用性的 RNA 结构预测实现这一壮举。推动蛋白质结构预测近期进展的一个主要因素是高度准确地预测蛋白质的基于距离的接触图。

结果

在这里,我们通过将深度学习与物理推断的二级结构、共进化信息和多序列比对采样相结合,表明我们可以实现 RNA 接触图预测,其精度与蛋白质接触图预测相当。更重要的是,对于有效同源序列数 (Neff > 50) 较高的 RNA,可以保证对 top L 长程接触的高度准确预测。将预测的接触图作为基于距离的约束条件的初步使用证实了其在 3D 结构预测中的有用性。

可用性和实现

SPOT-RNA-2D 可作为网络服务器在 https://sparks-lab.org/server/spot-rna-2d/ 使用,也可作为独立程序在 https://github.com/jaswindersingh2/SPOT-RNA-2D 使用。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99e2/9364379/d3ae51bda366/btac421f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验