Suppr超能文献

大肠杆菌 O157:H7 噬菌体 CBA120(TSP3)ORF212 的结构和尾刺糖基酶机制。

Structure and tailspike glycosidase machinery of ORF212 from E. coli O157:H7 phage CBA120 (TSP3).

机构信息

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA.

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA.

出版信息

Sci Rep. 2019 May 14;9(1):7349. doi: 10.1038/s41598-019-43748-9.

Abstract

Bacteriophage tailspike proteins mediate virion absorption through reversible primary receptor binding, followed by lipopolysaccharide or exopolysaccharide degradation. The Escherichia coli O157:H7 bacteriophage CBA120 genome encodes four distinct tailspike proteins, annotated as ORFs 210 through 213. Previously, we reported the crystal structure of ORF210 (TSP1). Here we describe the crystal structure of ORF212 (TSP3) determined at 1.85 Å resolution. As observed with other tailspike proteins, TSP3 assembles into a trimer. Each subunit of TSP3 has an N-terminal head domain that is structurally similar to that of TSP1, consistent with their high amino acid sequence identity. In contrast, despite sharing a β-helix fold, the overall structure of the C-terminal catalytic domain of TSP3 is quite different when compared to TSP1. The TSP3 structure suggests that the glycosidase active site resides in a cleft at the interface between two adjacent subunits where three acidic residues, Glu362 and Asp383 on one subunit, and Asp426 on a second subunit, are located in close proximity. Comparing the glycosidase activity of wild-type TSP3 to various point mutants revealed that catalysis requires the carboxyl groups of Glu362 and Asp426, and not of Asp383, confirming the enzyme employs two carboxyl groups to degrade lippopolysaccharide using an acid/base mechanism.

摘要

噬菌体尾刺蛋白通过可逆的初级受体结合介导病毒体的吸收,随后是脂多糖或胞外多糖的降解。大肠杆菌 O157:H7 噬菌体 CBA120 基因组编码四个不同的尾刺蛋白,注释为 ORF210 到 213。以前,我们报道了 ORF210(TSP1)的晶体结构。在这里,我们描述了 ORF212(TSP3)的晶体结构,分辨率为 1.85Å。与其他尾刺蛋白一样,TSP3 组装成三聚体。TSP3 的每个亚基都有一个 N 端头部结构域,其结构与 TSP1 相似,这与其高氨基酸序列同一性一致。相比之下,尽管共享β-螺旋折叠,TSP3 的 C 端催化结构域的整体结构与 TSP1 非常不同。TSP3 的结构表明,糖苷酶活性位点位于两个相邻亚基之间的裂隙中,一个亚基上的三个酸性残基 Glu362 和 Asp383,以及第二个亚基上的 Asp426,位于非常接近的位置。比较野生型 TSP3 的糖苷酶活性与各种点突变体表明,催化需要 Glu362 和 Asp426 的羧基,而不是 Asp383 的羧基,这证实了该酶使用两个羧基基团通过酸碱机制降解脂多糖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c9/6517402/1f8f7d3ac510/41598_2019_43748_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验