Suppr超能文献

使用深度学习方法检测表征系统的分子行为。

Detection of molecular behavior that characterizes systems using a deep learning approach.

作者信息

Endo Katsuhiro, Yuhara Daisuke, Tomobe Katsufumi, Yasuoka Kenji

机构信息

Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.

出版信息

Nanoscale. 2019 May 28;11(20):10064-10071. doi: 10.1039/c9nr00219g. Epub 2019 May 15.

Abstract

Molecular dynamics (MD) simulation is a powerful computational method to observe molecular behavior. Although the detection of molecular behavior that characterizes systems is an important task in the study of MD, it is typically difficult and depends on human expert knowledge. Therefore, we propose a novel analysis scheme for MD data using deep neural networks. A key aspect of our scheme is the estimation of statistical distances between different ensembles that are probability distributions over the possible states of systems. This allows us to build low-dimensional embeddings of ensembles to visualize differences between systems in a compact metric space. Furthermore, the molecular behavior that contributes to the differences between systems can also be detected using the trained function of deep neural networks. The applicability of our scheme is demonstrated using three types of MD data. Our scheme could be a powerful tool to clarify the underlying physics in the molecular systems.

摘要

分子动力学(MD)模拟是一种用于观察分子行为的强大计算方法。尽管检测表征系统的分子行为是MD研究中的一项重要任务,但这通常很困难且依赖于人类专家知识。因此,我们提出了一种使用深度神经网络的MD数据新颖分析方案。我们方案的一个关键方面是估计不同系综之间的统计距离,这些系综是系统可能状态上的概率分布。这使我们能够构建系综的低维嵌入,以便在紧凑的度量空间中可视化系统之间的差异。此外,还可以使用深度神经网络的训练函数检测导致系统差异的分子行为。我们使用三种类型的MD数据证明了我们方案的适用性。我们的方案可能是阐明分子系统潜在物理原理的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验