Igarashi Kodai, Ohue Masahito
Institute of Science Tokyo, Yokohama, Kanagawa 226-8501, Japan.
Biophys Physicobiol. 2025 Jul 16;22(3):e220015. doi: 10.2142/biophysico.bppb-v22.0015. eCollection 2025.
Predicting the binding affinity between proteins and ligands is a critical task in drug discovery. Although various computational methods have been proposed to estimate ligand target affinity, the method of Yasuda et al. (2022) ranks affinities based on the dynamic behavior obtained from molecular dynamics (MD) simulations without requiring structural similarity among ligand substituents. Thus, its applicability is broader than that of relative binding free energy calculations. However, their approach suffers from high computational costs due to the extensive simulation time and the deep learning computations needed for each ligand pair. Moreover, in the absence of experimental Δ values (oracle), the sign of the correlation can be misinterpreted. In this study, we present an alternative approach inspired by Yasuda et al.'s method, offering an alternative perspective by replacing the distance metric and reducing computational cost. Our contributions are threefold: (1) By introducing the Jensen-Shannon (JS) divergence, we eliminate the need for deep learning-based similarity estimation, thereby significantly reducing computation time; (2) We demonstrate that production run simulation times can be halved while maintaining comparable accuracy; and (3) We propose a method to predict the sign of the correlation between the first principal component (PC1) and Δ by using coarse Δ estimations obtained via AutoDock Vina.
预测蛋白质与配体之间的结合亲和力是药物发现中的一项关键任务。尽管已经提出了各种计算方法来估计配体-靶点亲和力,但Yasuda等人(2022年)的方法是基于分子动力学(MD)模拟获得的动力学行为对亲和力进行排序,而无需配体取代基之间的结构相似性。因此,其适用性比相对结合自由能计算更广。然而,由于模拟时间长以及每个配体对都需要进行深度学习计算,他们的方法存在计算成本高的问题。此外,在没有实验Δ值(预言值)的情况下,相关性的符号可能会被误判。在本研究中,我们提出了一种受Yasuda等人方法启发的替代方法,通过替换距离度量并降低计算成本提供了一个不同的视角。我们的贡献有三个方面:(1)通过引入 Jensen-Shannon(JS)散度,我们无需基于深度学习的相似性估计,从而显著减少计算时间;(2)我们证明在保持相当精度的同时,生产运行模拟时间可以减半;(3)我们提出了一种方法,通过使用通过AutoDock Vina获得的粗略Δ估计来预测第一主成分(PC1)与Δ之间相关性的符号。