Suppr超能文献

交通速度预测:一种基于注意力的方法。

Traffic Speed Prediction: An Attention-Based Method.

机构信息

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China.

出版信息

Sensors (Basel). 2019 Sep 5;19(18):3836. doi: 10.3390/s19183836.

Abstract

Short-term traffic speed prediction has become one of the most important parts of intelligent transportation systems (ITSs). In recent years, deep learning methods have demonstrated their superiority both in accuracy and efficiency. However, most of them only consider the temporal information, overlooking the spatial or some environmental factors, especially the different correlations between the target road and the surrounding roads. This paper proposes a traffic speed prediction approach based on temporal clustering and hierarchical attention (TCHA) to address the above issues. We apply temporal clustering to the target road to distinguish the traffic environment. Traffic data in each cluster have a similar distribution, which can help improve the prediction accuracy. A hierarchical attention-based mechanism is then used to extract the features at each time step. The encoder measures the importance of spatial features, and the decoder measures the temporal ones. The proposed method is evaluated over the data of a certain area in Hangzhou, and experiments have shown that this method can outperform the state of the art for traffic speed prediction.

摘要

短期交通速度预测已成为智能交通系统 (ITSs) 中最重要的部分之一。近年来,深度学习方法在准确性和效率方面都表现出了优越性。然而,大多数方法仅考虑了时间信息,忽略了空间或一些环境因素,特别是目标道路与周围道路之间的不同相关性。本文提出了一种基于时间聚类和层次注意 (TCHA) 的交通速度预测方法来解决上述问题。我们将时间聚类应用于目标道路以区分交通环境。每个聚类中的交通数据具有相似的分布,这有助于提高预测精度。然后使用基于层次注意的机制来提取每个时间步的特征。编码器衡量空间特征的重要性,解码器衡量时间特征的重要性。所提出的方法在杭州某地区的数据上进行了评估,实验表明,该方法在交通速度预测方面优于现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a00e/6766943/14a5f2df94d4/sensors-19-03836-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验