Suppr超能文献

人工神经网络计算机断层灌注预测缺血核心。

Artificial Neural Network Computer Tomography Perfusion Prediction of Ischemic Core.

机构信息

From the Department of Radiology, University of Vermont, Burlington (A.S.K.).

Department of Neurology and Neurological Sciences, Stanford Stroke Center, Stanford University Medical Center, CA (S.C., G.W.A., M.G.L.).

出版信息

Stroke. 2019 Jun;50(6):1578-1581. doi: 10.1161/STROKEAHA.118.022649. Epub 2019 May 16.

Abstract

Background and Purpose- Computed tomography perfusion (CTP) is a useful tool in the evaluation of acute ischemic stroke, where it can provide an estimate of the ischemic core and the ischemic penumbra. The optimal CTP parameters to identify the ischemic core remain undetermined. Methods- We used artificial neural networks (ANNs) to optimally predict the ischemic core in acute stroke patients, using diffusion-weighted imaging as the gold standard. We first designed an ANN based on CTP data alone and next designed an ANN based on clinical and CTP data. Results- The ANN based on CTP data predicted the ischemic core with a mean absolute error of 13.8 mL (SD, 13.6 mL) compared with diffusion-weighted imaging. The area under the receiver operator characteristic curve was 0.85. At the optimal threshold, the sensitivity for predicting the ischemic core was 0.90 and the specificity was 0.62. Combining CTP data with clinical data available at time of presentation resulted in the same mean absolute error (13.8 mL) but lower SD (12.4 mL). The area under the curve, sensitivity, and specificity were 0.87, 0.91, and 0.65, respectively. The maximal Dice coefficient was 0.48 in the ANN based on CTP data exclusively. Conclusions- An ANN that integrates clinical and CTP data predicts the ischemic core with accuracy.

摘要

背景与目的- 计算机断层灌注(CTP)是评估急性缺血性脑卒中的有用工具,它可以提供对缺血核心和缺血半影区的估计。确定最佳的 CTP 参数来识别缺血核心仍然不确定。

方法- 我们使用人工神经网络(ANNs)来优化预测急性脑卒中患者的缺血核心,以弥散加权成像作为金标准。我们首先设计了一个仅基于 CTP 数据的 ANN,然后设计了一个基于临床和 CTP 数据的 ANN。

结果- 基于 CTP 数据的 ANN 预测缺血核心的平均绝对误差为 13.8 毫升(标准差为 13.6 毫升),与弥散加权成像相比。接收者操作特征曲线下的面积为 0.85。在最佳阈值下,预测缺血核心的敏感性为 0.90,特异性为 0.62。将 CTP 数据与就诊时的临床数据相结合,得到相同的平均绝对误差(13.8 毫升),但标准差较低(12.4 毫升)。曲线下面积、敏感性和特异性分别为 0.87、0.91 和 0.65。仅基于 CTP 数据的 ANN 的最大 Dice 系数为 0.48。

结论- 整合临床和 CTP 数据的 ANN 可以准确预测缺血核心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd9b/6538437/ac0350724103/nihms-1527257-f0001.jpg

相似文献

引用本文的文献

2
Taxonomy of Acute Stroke: Imaging, Processing, and Treatment.急性中风的分类:成像、处理与治疗
Diagnostics (Basel). 2024 May 19;14(10):1057. doi: 10.3390/diagnostics14101057.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验