Sun Songmei, Wu Ji, Watanabe Motonori, Akbay Taner, Ishihara Tatsumi
International Institute for Carbon-Neutral Energy Research , Kyushu University , Fukuoka 819-0395 , Japan.
J Phys Chem Lett. 2019 Jun 6;10(11):2998-3005. doi: 10.1021/acs.jpclett.9b01032. Epub 2019 May 22.
Solar water splitting to produce hydrogen is a promising solution for global energy issues. One of the main bottlenecks in this technology is the spontaneous fast backward reaction (2H + O → HO, Δ G < 0), limiting the solar energy conversion efficiency. How to suppress backward reaction is vitally important but rarely reported. Here we found that single-electron-trapped oxygen vacancy (Vo·) can suppress spontaneous backward reaction in pure water splitting. Taking WO·0.33HO catalyst as an example, ultrathin WO·0.33HO {100} facets with large amount of surface Vo· realized a continuous H evolution from pure water splitting with a productivity of 9.9 μmol/g·h without the assistance of any sacrifice agent and noble metal cocatalyst. Quantum chemical calculations revealed that the backward-reaction suppression ability of Vo· is attributed to the high concentration of localized electrons around Vo·, stimulating unidirectional simultaneous water dissociation into H and OH under light irradiation.
太阳能光解水制氢是解决全球能源问题的一个有前景的方案。该技术的主要瓶颈之一是自发的快速逆反应(2H + O → HO,ΔG < 0),这限制了太阳能转换效率。如何抑制逆反应至关重要,但鲜有报道。在此我们发现单电子捕获氧空位(Vo·)能够抑制纯水分解中的自发逆反应。以WO·0.33HO催化剂为例,具有大量表面Vo·的超薄WO·0.33HO {100}晶面在不借助任何牺牲剂和贵金属助催化剂的情况下,实现了从纯水分解中持续析氢,产率为9.9 μmol/g·h。量子化学计算表明,Vo·的逆反应抑制能力归因于Vo·周围局域电子的高浓度,在光照下促使水单向同时解离为H和OH。