International Institute for Carbon-Neutral Energy Research (I2CNER) , Kyushu University , Fukuoka 819-0395 , Japan.
Department of Chemical and Materials Engineering , University of Nevada , Reno , Nevada 89557-0388 , United States.
J Am Chem Soc. 2018 May 23;140(20):6474-6482. doi: 10.1021/jacs.8b03316. Epub 2018 May 11.
Artificial photosynthesis from CO reduction is severely hampered by the kinetically challenging multi-electron reaction process. Oxygen vacancies (Vo) with abundant localized electrons have great potential to overcome this limitation. However, surface Vo usually have low concentrations and are easily oxidized, causing them to lose their activities. For practical application of CO photoreduction, fabricating and enhancing the stability of Vo on semiconductors is indispensable. Here we report the first synthesis of ultrathin WO·0.33HO nanotubes with a large amount of exposed surface Vo sites, which can realize excellent and stable CO photoreduction to CHCOOH in pure water under solar light. The selectivity for acetum generation is up to 85%, with an average productivity of about 9.4 μmol g h. More importantly, Vo in the catalyst are sustainable, and their concentration was not decreased even after 60 h of reaction. Quantum chemical calculations and in situ DRIFT studies revealed that the main reaction pathway might be CO → COOH → (COOH) → CHCOOH.
人工从 CO 还原合成是严重受阻于动力学挑战性的多电子反应过程。具有丰富局域电子的氧空位(Vo)具有克服这一限制的巨大潜力。然而,表面 Vo 通常浓度较低,容易被氧化,从而失去活性。为了实现 CO 光还原的实际应用,在半导体上制造和增强 Vo 的稳定性是必不可少的。在这里,我们报告了首例具有大量暴露表面 Vo 位的超薄 WO·0.33HO 纳米管的合成,该纳米管在太阳光下可在纯水中实现优异且稳定的 CO 光还原为 CHCOOH。对于醋酸生成的选择性高达 85%,平均产率约为 9.4 μmol g h。更重要的是,催化剂中的 Vo 是可持续的,即使在反应 60 小时后,其浓度也没有下降。量子化学计算和原位 DRIFT 研究表明,主要的反应途径可能是 CO → COOH → (COOH) → CHCOOH。