Suppr超能文献

从基因检测板数据中检测种系拷贝数变异:对现有技术进行基准测试。

Detection of germline CNVs from gene panel data: benchmarking the state of the art.

作者信息

Munté Elisabet, Roca Carla, Del Valle Jesús, Feliubadaló Lidia, Pineda Marta, Gel Bernat, Castellanos Elisabeth, Rivera Barbara, Cordero David, Moreno Víctor, Lázaro Conxi, Moreno-Cabrera José Marcos

机构信息

Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL-ONCOBELL, Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Spain.

Doctoral Programme in Biomedicine, University of Barcelona (UB), Casanova 143, 08036 Barcelona, Spain.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae645.

Abstract

Germline copy number variants (CNVs) play a significant role in hereditary diseases. However, the accurate detection of CNVs from targeted next-generation sequencing (NGS) gene panel data remains a challenging task. Several tools for calling CNVs within this context have been published to date, but the available benchmarks suffer from limitations, including testing on simulated data, testing on small datasets, and testing a small subset of published tools. In this work, we conducted a comprehensive benchmarking of 12 tools (Atlas-CNV, ClearCNV, ClinCNV, CNVkit, Cobalt, CODEX2, CoNVaDING, DECoN, ExomeDepth, GATK-gCNV, panelcn.MOPS, VisCap) on four validated gene panel datasets using their default parameters. We also assessed the impact of modifying 107 tool parameters and identified 13 parameter values that we suggest using to improve the tool F1 score. A total of 66 tool pair combinations were also evaluated to produce better meta-callers. Furthermore, we developed CNVbenchmarker2, a framework to help users perform their own evaluations. Our results indicated that in terms of F1 score, ClinCNV and GATK-gCNV were the best CNV callers. Regarding sensitivity, GATK-gCNV also exhibited particularly high performance. The results presented here provide an evaluation of the current state of the art in germline CNV detection from gene panel data and can be used as a reference resource when using any of the tools.

摘要

种系拷贝数变异(CNV)在遗传性疾病中起着重要作用。然而,从靶向新一代测序(NGS)基因panel数据中准确检测CNV仍然是一项具有挑战性的任务。迄今为止,已经发表了几种在这种情况下调用CNV的工具,但现有的基准测试存在局限性,包括在模拟数据上进行测试、在小数据集上进行测试以及对一小部分已发表的工具进行测试。在这项工作中,我们使用其默认参数,在四个经过验证的基因panel数据集上对12种工具(Atlas-CNV、ClearCNV、ClinCNV、CNVkit、Cobalt、CODEX2、CoNVaDING、DECoN、ExomeDepth、GATK-gCNV、panelcn.MOPS、VisCap)进行了全面的基准测试。我们还评估了修改107个工具参数的影响,并确定了13个建议用于提高工具F1分数的参数值。还对总共66种工具对组合进行了评估,以生成更好的元调用器。此外,我们开发了CNVbenchmarker2,这是一个帮助用户进行自己评估的框架。我们的结果表明,就F1分数而言,ClinCNV和GATK-gCNV是最好的CNV调用器。在灵敏度方面,GATK-gCNV也表现出特别高的性能。这里给出的结果提供了对从基因panel数据中检测种系CNV的当前技术水平的评估,并且在使用任何工具时都可以用作参考资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62fe/11637760/253ad1ae8aea/bbae645ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验