Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109;
The Forsyth Institute, Cambridge, MA 02142.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11454-11459. doi: 10.1073/pnas.1820256116. Epub 2019 May 16.
Bacteria that are recalcitrant to genetic manipulation using modern in vitro techniques are termed genetically intractable. Genetic intractability is a fundamental barrier to progress that hinders basic, synthetic, and translational microbiology research and development beyond a few model organisms. The most common underlying causes of genetic intractability are restriction-modification (RM) systems, ubiquitous defense mechanisms against xenogeneic DNA that hinder the use of genetic approaches in the vast majority of bacteria and exhibit strain-level variation. Here, we describe a systematic approach to overcome RM systems. Our approach was inspired by a simple hypothesis: if a synthetic piece of DNA lacks the highly specific target recognition motifs for a host's RM systems, then it is invisible to these systems and will not be degraded during artificial transformation. Accordingly, in this process, we determine the genome and methylome of an individual bacterial strain and use this information to define the bacterium's RM target motifs. We then synonymously eliminate RM targets from the nucleotide sequence of a genetic tool in silico, synthesize an RM-silent "SyngenicDNA" tool, and propagate the tool as minicircle plasmids, termed SyMPL (SyngenicDNA Minicircle Plasmid) tools, before transformation. In a proof-of-principle of our approach, we demonstrate a profound improvement (five orders of magnitude) in the transformation of a clinically relevant USA300 strain of This stealth-by-engineering SyngenicDNA approach is effective, flexible, and we expect in future applications could enable microbial genetics free of the restraints of restriction-modification barriers.
使用现代体外技术对遗传操作具有抗性的细菌被称为遗传上难以操作的。遗传上的难以操作是一个基本的障碍,阻碍了基础、合成和转化微生物学研究和发展超越少数模式生物。遗传上难以操作的最常见的根本原因是限制修饰(RM)系统,这是一种普遍存在的防御机制,可抵御异种 DNA,这在绝大多数细菌中阻碍了遗传方法的使用,并表现出菌株水平的变异。在这里,我们描述了一种克服 RM 系统的系统方法。我们的方法受到一个简单假设的启发:如果合成 DNA 片段缺乏宿主 RM 系统的高度特异性靶标识别基序,那么它对这些系统是不可见的,并且在人工转化过程中不会被降解。因此,在这个过程中,我们确定了单个细菌菌株的基因组和甲基组,并使用这些信息来定义细菌的 RM 靶标基序。然后,我们在计算机中同义地消除遗传工具中的 RM 靶标,合成 RM 沉默的“同基因 DNA”工具,并将工具作为微小环质粒进行繁殖,称为 SyMPL(同基因 DNA 微小环质粒)工具,然后进行转化。在我们方法的原理验证中,我们证明了临床相关 USA300 菌株转化的显著改善(五个数量级)。这种通过工程设计的隐形 SyngenicDNA 方法是有效的、灵活的,我们预计在未来的应用中,可以使微生物遗传学摆脱限制修饰障碍的限制。