Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy; Sapienza Università di Roma, 00185 Rome, Italy.
Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, 00184 Rome, Italy; Fondazione Santa Lucia IRCCS, 00179 Rome, Italy.
J Neurosci Methods. 2019 Jul 15;323:82-89. doi: 10.1016/j.jneumeth.2019.05.003. Epub 2019 May 15.
One of the most common tasks in small rodents MRI pipelines is the voxel-wise segmentation of the volume in multiple classes. While many segmentation schemes have been developed for the human brain, fewer are available for rodent MRI, often by adaptation from human neuroimaging. Common methods include atlas-based and clustering schemes. The former labels the target volume by registering one or more pre-labeled atlases using a deformable registration method, in which case the result depends on the quality of the reference volumes, the registration algorithm and the label fusion approach, if more than one atlas is employed. The latter is based on an expectation maximization procedure to maximize the variance between voxel categories, and is often combined with Markov Random Fields and the atlas based approach to include spatial information, priors, and improve the classification accuracy. Our primary goal is to critically review the state of the art of rat and mouse segmentation of neuro MRI volumes and compare the available literature on popular, readily and freely available MRI toolsets, including SPM, FSL and ANTs, when applied to this task in the context of common pre-processing steps. Furthermore, we will briefly address the emerging Deep Learning methods for the segmentation of medical imaging, and the perspectives for applications to small rodents.
在小型啮齿动物 MRI 流水线中,最常见的任务之一是对多个类别的体素进行分割。虽然已经开发出许多用于人类大脑的分割方案,但用于啮齿动物 MRI 的方案却较少,通常是通过从人类神经影像学中进行改编。常见的方法包括基于图谱和聚类方案。前者通过使用可变形配准方法对一个或多个预标记的图谱进行配准来标记目标体积,在这种情况下,结果取决于参考体积的质量、配准算法和标签融合方法(如果使用多个图谱)。后者基于期望最大化过程,以最大化体素类别之间的方差,通常与马尔可夫随机场和基于图谱的方法相结合,以包含空间信息、先验信息并提高分类准确性。我们的主要目标是批判性地回顾神经 MRI 体积的大鼠和小鼠分割的最新技术,并比较在常见预处理步骤的背景下应用于该任务的流行、易于获取和免费的 MRI 工具集(如 SPM、FSL 和 ANTs)的可用文献。此外,我们将简要介绍用于医学成像分割的新兴深度学习方法,以及将其应用于小型啮齿动物的前景。