Suppr超能文献

采用迁移学习的三维U-Net改进了从大鼠、小鼠和猴子的脑部MRI扫描中自动进行全脑轮廓描绘的方法。

Three-dimensional U-Net with transfer learning improves automated whole brain delineation from MRI brain scans of rats, mice, and monkeys.

作者信息

Porter Valerie A, Hobson Brad A, D'Almeida Alita J, Bales Karen L, Lein Pamela J, Chaudhari Abhijit J

机构信息

Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, USA; Department of Radiology, University of California, Davis, One Shields Ave, Davis, CA, USA.

Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, USA; Center for Molecular and Genomic Imaging, University of California, Davis, One Shields Ave, Davis, CA, USA.

出版信息

Comput Biol Med. 2025 Sep;195:110569. doi: 10.1016/j.compbiomed.2025.110569. Epub 2025 Jun 20.

Abstract

BACKGROUND

Automated whole-brain delineation (WBD) techniques often struggle to generalize across pre-clinical studies due to variations in animal models, magnetic resonance imaging (MRI) scanners, and tissue contrasts. We developed a 3D U-Net neural network for WBD pre-trained on organophosphate intoxication (OPI) rat brain MRI scans. We used transfer learning (TL) to adapt this OPI-pretrained network to other animal models: rat model of Alzheimer's disease (AD), mouse model of tetramethylenedisulfotetramine (TETS) intoxication, and titi monkey model of social bonding.

METHODS

We assessed an OPI-pretrained 3D U-Net across animal models under three conditions: (1) direct application to each dataset; (2) utilizing TL; and (3) training disease-specific U-Net models. For each condition, training dataset size (TDS) was optimized, and output WBDs were compared to manual segmentations for accuracy.

RESULTS

The OPI-pretrained 3D U-Net (TDS = 100) achieved the best accuracy [median[min-max]] for the test OPI dataset with a Dice coefficient (DC) = [0.987 [0.977-0.992]] and Hausdorff distance (HD) = [0.86 [0.55-1.27]]mm. TL improved generalization across all models [AD (TDS = 40): DC = 0.987 [0.977-0.992] and HD = 0.72 [0.54-1.00]mm; TETS (TDS = 10): DC = 0.992 [0.984-0.993] and HD = 0.40 [0.31-0.50]mm; Monkey (TDS = 8): DC = 0.977 [0.968-0.979] and HD = 3.03 [2.19-3.91]mm], showing performance comparable to disease-specific networks.

CONCLUSIONS

The OPI-pretrained 3D U-Net with TL achieved accuracy comparable to disease-specific networks with reduced training data (TDS ≤ 40 scans) across all models. Future work will focus on developing a multi-region delineation pipeline for pre-clinical MRI brain data, utilizing the proposed WBD as an initial step.

摘要

背景

由于动物模型、磁共振成像(MRI)扫描仪和组织对比度的差异,自动化全脑勾勒(WBD)技术在临床前研究中往往难以推广。我们开发了一种3D U-Net神经网络,用于在有机磷中毒(OPI)大鼠脑MRI扫描上进行预训练的WBD。我们使用迁移学习(TL)将这个OPI预训练网络应用于其他动物模型:阿尔茨海默病(AD)大鼠模型、毒鼠强(TETS)中毒小鼠模型和社会联结绒猴模型。

方法

我们在三种情况下评估了一个OPI预训练的3D U-Net在不同动物模型上的表现:(1)直接应用于每个数据集;(2)利用迁移学习;(3)训练针对特定疾病的U-Net模型。对于每种情况,优化训练数据集大小(TDS),并将输出的WBD与手动分割结果进行准确性比较。

结果

OPI预训练的3D U-Net(TDS = 100)在测试OPI数据集上达到了最佳准确性[中位数[最小值 - 最大值]],骰子系数(DC)= [0.987 [0.977 - 0.992]],豪斯多夫距离(HD)= [0.86 [0.55 - 1.27]]mm。迁移学习提高了在所有模型上的泛化能力[AD(TDS = 40):DC = 0.987 [0.977 - 0.992],HD = 0.72 [0.54 - 1.00]mm;TETS(TDS = 10):DC = 0.992 [0.984 - 0.993],HD = 0.40 [0.31 - 0.50]mm;猴子(TDS = 8):DC = 0.977 [0.968 - 0.979],HD = 3.03 [2.19 - 3.91]mm],表现与针对特定疾病的网络相当。

结论

带有迁移学习的OPI预训练3D U-Net在所有模型上使用减少的训练数据(TDS≤40次扫描)达到了与针对特定疾病的网络相当的准确性。未来的工作将集中于利用所提出的WBD作为初始步骤,为临床前MRI脑数据开发一个多区域勾勒流程。

相似文献

1
Three-dimensional U-Net with transfer learning improves automated whole brain delineation from MRI brain scans of rats, mice, and monkeys.
Comput Biol Med. 2025 Sep;195:110569. doi: 10.1016/j.compbiomed.2025.110569. Epub 2025 Jun 20.
2
Fully automated whole brain segmentation from rat MRI scans with a convolutional neural network.
J Neurosci Methods. 2024 May;405:110078. doi: 10.1016/j.jneumeth.2024.110078. Epub 2024 Feb 8.
4
5
Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.
J Magn Reson Imaging. 2025 Jun;61(6):2469-2479. doi: 10.1002/jmri.29686. Epub 2025 Jan 10.
6
Improving brain atrophy quantification with deep learning from automated labels using tissue similarity priors.
Comput Biol Med. 2024 Sep;179:108811. doi: 10.1016/j.compbiomed.2024.108811. Epub 2024 Jul 10.
7
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
9
Patient-Specific Deep Learning Tracking Framework for Real-Time 2D Target Localization in Magnetic Resonance Imaging-Guided Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2025 Jul 15;122(4):827-837. doi: 10.1016/j.ijrobp.2024.10.021. Epub 2024 Oct 24.

本文引用的文献

2
Fully automated whole brain segmentation from rat MRI scans with a convolutional neural network.
J Neurosci Methods. 2024 May;405:110078. doi: 10.1016/j.jneumeth.2024.110078. Epub 2024 Feb 8.
3
Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age.
Front Aging Neurosci. 2023 Nov 1;15:1249415. doi: 10.3389/fnagi.2023.1249415. eCollection 2023.
4
Automatic brain extraction for rat magnetic resonance imaging data using U-Net.
Phys Med Biol. 2023 Oct 2;68(20). doi: 10.1088/1361-6560/acf641.
5
Neural correlates and effect of jealousy on cognitive flexibility in the female titi monkey (Plecturocebus cupreus).
Horm Behav. 2023 Jun;152:105352. doi: 10.1016/j.yhbeh.2023.105352. Epub 2023 Apr 3.
7
Interactions between the opioid system, corticotropin-releasing hormone and oxytocin in partner loss.
Philos Trans R Soc Lond B Biol Sci. 2022 Aug 29;377(1858):20210061. doi: 10.1098/rstb.2021.0061. Epub 2022 Jul 11.
8
SynthStrip: skull-stripping for any brain image.
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
9
Towards a guideline for evaluation metrics in medical image segmentation.
BMC Res Notes. 2022 Jun 20;15(1):210. doi: 10.1186/s13104-022-06096-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验