Suppr超能文献

精神病史和年龄对默认模式网络的自我调节的影响。

The effects of psychiatric history and age on self-regulation of the default mode network.

机构信息

Neuroimaging Unit, Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, 08005, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, 08005, Spain.

Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, 8032, Switzerland; Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, 8057, Switzerland; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Winterthurerstr. 190, Zürich, 8057, Switzerland; Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.

出版信息

Neuroimage. 2019 Sep;198:150-159. doi: 10.1016/j.neuroimage.2019.05.008. Epub 2019 May 16.

Abstract

Real-time neurofeedback enables human subjects to learn to regulate their brain activity, effecting behavioral changes and improvements of psychiatric symptomatology. Neurofeedback up-regulation and down-regulation have been assumed to share common neural correlates. Neuropsychiatric pathology and aging incur suboptimal functioning of the default mode network. Despite the exponential increase in real-time neuroimaging studies, the effects of aging, pathology and the direction of regulation on neurofeedback performance remain largely unknown. Using real-time fMRI data shared through the Rockland Sample Real-Time Neurofeedback project (N = 136) and open-access analyses, we first modeled neurofeedback performance and learning in a group of subjects with psychiatric history (n = 74) and a healthy control group (n = 62). Subsequently, we examined the relationship between up-regulation and down-regulation learning, the relationship between age and neurofeedback performance in each group and differences in neurofeedback performance between the two groups. For interpretative purposes, we also investigated functional connectomics prior to neurofeedback. Results show that in an initial session of default mode network neurofeedback with real-time fMRI, up-regulation and down-regulation learning scores are negatively correlated. This finding is related to resting state differences in the eigenvector centrality of the posterior cingulate cortex. Moreover, age correlates negatively with default mode network neurofeedback performance, only in absence of psychiatric history. Finally, adults with psychiatric history outperform healthy controls in default mode network up-regulation. Interestingly, the performance difference is related to no up-regulation learning in controls. This finding is supported by marginally higher default mode network centrality during resting state, in the presence of psychiatric history.

摘要

实时神经反馈使人类受试者能够学习调节大脑活动,从而实现行为改变和精神症状的改善。人们认为神经反馈的上调和下调具有共同的神经相关物。神经精神病理学和衰老会导致默认模式网络的功能不佳。尽管实时神经影像学研究呈指数级增长,但衰老、病理学以及调节方向对神经反馈表现的影响在很大程度上仍不清楚。我们使用通过 Rockland 样本实时神经反馈项目(N=136)共享的实时 fMRI 数据和开放获取的分析,首先在一组有精神病史的受试者(n=74)和健康对照组(n=62)中对神经反馈表现和学习进行建模。随后,我们研究了上调和下调学习之间的关系,每组中年龄与神经反馈表现之间的关系,以及两组之间神经反馈表现的差异。为了便于解释,我们还在进行神经反馈之前调查了功能连接组学。结果表明,在使用实时 fMRI 进行默认模式网络神经反馈的初始阶段,上调和下调学习评分呈负相关。这一发现与后扣带回皮层特征向量中心的静息状态差异有关。此外,年龄与无精神病史者的默认模式网络神经反馈表现呈负相关。最后,有精神病史的成年人在默认模式网络的上调中表现优于健康对照组。有趣的是,表现差异与对照组无上调学习有关。这一发现得到了在存在精神病史的情况下,静息状态默认模式网络中心性略高的支持。

相似文献

1
The effects of psychiatric history and age on self-regulation of the default mode network.
Neuroimage. 2019 Sep;198:150-159. doi: 10.1016/j.neuroimage.2019.05.008. Epub 2019 May 16.
2
The real-time fMRI neurofeedback based stratification of Default Network Regulation Neuroimaging data repository.
Neuroimage. 2017 Feb 1;146:157-170. doi: 10.1016/j.neuroimage.2016.10.048. Epub 2016 Nov 9.
5
Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders.
Biol Psychiatry. 2019 Mar 1;85(5):379-388. doi: 10.1016/j.biopsych.2018.11.011. Epub 2018 Nov 23.
8
Network-based fMRI-neurofeedback training of sustained attention.
Neuroimage. 2020 Nov 1;221:117194. doi: 10.1016/j.neuroimage.2020.117194. Epub 2020 Jul 23.
10
Training emotion regulation through real-time fMRI neurofeedback of amygdala activity.
Neuroimage. 2019 Jan 1;184:687-696. doi: 10.1016/j.neuroimage.2018.09.068. Epub 2018 Oct 1.

引用本文的文献

4
The impact of aging on morphometric changes in the cerebellum: A voxel-based morphometry study.
Front Aging Neurosci. 2023 Jan 20;15:1078448. doi: 10.3389/fnagi.2023.1078448. eCollection 2023.
5
Real-time neurofeedback to alter interpretations of a naturalistic narrative.
Neuroimage Rep. 2022 Sep;2(3). doi: 10.1016/j.ynirp.2022.100111. Epub 2022 Jul 2.
6
Neurofeedback and neural self-regulation: a new perspective based on allostasis.
Rev Neurosci. 2022 Feb 7;33(6):607-629. doi: 10.1515/revneuro-2021-0133. Print 2022 Aug 26.
8
A systematic review of fMRI neurofeedback reporting and effects in clinical populations.
Neuroimage Clin. 2020;28:102496. doi: 10.1016/j.nicl.2020.102496. Epub 2020 Nov 11.
9
Neuromodulation of brain activation associated with addiction: A review of real-time fMRI neurofeedback studies.
Neuroimage Clin. 2020;27:102350. doi: 10.1016/j.nicl.2020.102350. Epub 2020 Jul 18.
10
Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?
Hum Brain Mapp. 2020 Oct 1;41(14):3839-3854. doi: 10.1002/hbm.25089. Epub 2020 Jul 30.

本文引用的文献

3
Effects of Sad and Happy Music on Mind-Wandering and the Default Mode Network.
Sci Rep. 2017 Oct 31;7(1):14396. doi: 10.1038/s41598-017-14849-0.
5
Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research.
J Psychiatr Res. 2017 Sep;92:147-159. doi: 10.1016/j.jpsychires.2017.04.007. Epub 2017 Apr 24.
8
Closed-loop brain training: the science of neurofeedback.
Nat Rev Neurosci. 2017 Feb;18(2):86-100. doi: 10.1038/nrn.2016.164. Epub 2016 Dec 22.
9
Fractionating the anterior temporal lobe: MVPA reveals differential responses to input and conceptual modality.
Neuroimage. 2017 Feb 15;147:19-31. doi: 10.1016/j.neuroimage.2016.11.067. Epub 2016 Nov 28.
10
The real-time fMRI neurofeedback based stratification of Default Network Regulation Neuroimaging data repository.
Neuroimage. 2017 Feb 1;146:157-170. doi: 10.1016/j.neuroimage.2016.10.048. Epub 2016 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验