Jørgensen Bo Barker, Findlay Alyssa J, Pellerin André
Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark.
Front Microbiol. 2019 Apr 24;10:849. doi: 10.3389/fmicb.2019.00849. eCollection 2019.
Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.
微生物将硫酸盐异化还原为硫化物是缺氧海床中有机质矿化的主要终端途径。所产生的硫化物的化学或微生物氧化在硫循环中建立了一个复杂的途径网络,导致中间硫物种的产生,并部分地回到硫酸盐。这些中间体包括元素硫、多硫化物、硫代硫酸盐和亚硫酸盐,它们都是进一步微生物氧化、还原或歧化的底物。新的微生物学发现,如通过硫化物氧化电缆细菌进行的长距离电子转移,增加了其复杂性。同位素交换反应在稳定同位素地球化学以及使用放射性示踪剂进行硫转化的实验研究中起着重要作用。微生物催化的过程部分是可逆的,反向反应影响我们对放射性示踪剂实验的解释,并提供了一种同位素分馏机制。我们在此回顾了在海底硫循环的微生物生态学、生物地球化学和同位素地球化学方面的理解进展和现状。