Suppr超能文献

海洋沉积物的生物地球化学硫循环

The Biogeochemical Sulfur Cycle of Marine Sediments.

作者信息

Jørgensen Bo Barker, Findlay Alyssa J, Pellerin André

机构信息

Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark.

出版信息

Front Microbiol. 2019 Apr 24;10:849. doi: 10.3389/fmicb.2019.00849. eCollection 2019.

Abstract

Microbial dissimilatory sulfate reduction to sulfide is a predominant terminal pathway of organic matter mineralization in the anoxic seabed. Chemical or microbial oxidation of the produced sulfide establishes a complex network of pathways in the sulfur cycle, leading to intermediate sulfur species and partly back to sulfate. The intermediates include elemental sulfur, polysulfides, thiosulfate, and sulfite, which are all substrates for further microbial oxidation, reduction or disproportionation. New microbiological discoveries, such as long-distance electron transfer through sulfide oxidizing cable bacteria, add to the complexity. Isotope exchange reactions play an important role for the stable isotope geochemistry and for the experimental study of sulfur transformations using radiotracers. Microbially catalyzed processes are partly reversible whereby the back-reaction affects our interpretation of radiotracer experiments and provides a mechanism for isotope fractionation. We here review the progress and current status in our understanding of the sulfur cycle in the seabed with respect to its microbial ecology, biogeochemistry, and isotope geochemistry.

摘要

微生物将硫酸盐异化还原为硫化物是缺氧海床中有机质矿化的主要终端途径。所产生的硫化物的化学或微生物氧化在硫循环中建立了一个复杂的途径网络,导致中间硫物种的产生,并部分地回到硫酸盐。这些中间体包括元素硫、多硫化物、硫代硫酸盐和亚硫酸盐,它们都是进一步微生物氧化、还原或歧化的底物。新的微生物学发现,如通过硫化物氧化电缆细菌进行的长距离电子转移,增加了其复杂性。同位素交换反应在稳定同位素地球化学以及使用放射性示踪剂进行硫转化的实验研究中起着重要作用。微生物催化的过程部分是可逆的,反向反应影响我们对放射性示踪剂实验的解释,并提供了一种同位素分馏机制。我们在此回顾了在海底硫循环的微生物生态学、生物地球化学和同位素地球化学方面的理解进展和现状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f86/6492693/8da626304392/fmicb-10-00849-g001.jpg

相似文献

1
The Biogeochemical Sulfur Cycle of Marine Sediments.
Front Microbiol. 2019 Apr 24;10:849. doi: 10.3389/fmicb.2019.00849. eCollection 2019.
4
Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.
Geochem Trans. 2015 Jul 2;16:7. doi: 10.1186/s12932-015-0021-5. eCollection 2015.
5
Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage.
Front Microbiol. 2017 Aug 17;8:1564. doi: 10.3389/fmicb.2017.01564. eCollection 2017.
7
Turnover Rates of Intermediate Sulfur Species (, S, S, S, ) in Anoxic Freshwater and Sediments.
Front Microbiol. 2017 Dec 21;8:2551. doi: 10.3389/fmicb.2017.02551. eCollection 2017.
10
Large sulfur isotope fractionation by bacterial sulfide oxidation.
Sci Adv. 2019 Jul 24;5(7):eaaw1480. doi: 10.1126/sciadv.aaw1480. eCollection 2019 Jul.

引用本文的文献

1
Evaluating Sulfurization as a Blue Carbon Sink in a Southern California Salt Marsh.
Limnol Oceanogr. 2025 Jul;70(7):1981-1991. doi: 10.1002/lno.70089. Epub 2025 May 19.
2
Microbial iron oxide respiration coupled to sulfide oxidation.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09467-0.
3
A review on microbe-mineral transformations and their impact on plant growth.
Front Microbiol. 2025 Jul 31;16:1549022. doi: 10.3389/fmicb.2025.1549022. eCollection 2025.
5
A new pathway for pyrite formation in low-sulfate sediments driven by mineralization of reduced organic sulfur.
Fundam Res. 2023 Sep 14;5(4):1607-1613. doi: 10.1016/j.fmre.2023.08.003. eCollection 2025 Jul.
6
Shift in the metabolic profile of sediment microbial communities during seagrass decline.
Environ Microbiome. 2025 Jul 22;20(1):93. doi: 10.1186/s40793-025-00750-1.
8
Bacterial community composition and function in different habitats in Antarctic Fildes region revealed by high-throughput sequencing.
Front Microbiol. 2025 Jun 16;16:1524681. doi: 10.3389/fmicb.2025.1524681. eCollection 2025.
10
Seasonal Dynamics of Sediment Microbial Communities at Different Distances from Artificial Reef Units.
Microorganisms. 2025 May 23;13(6):1194. doi: 10.3390/microorganisms13061194.

本文引用的文献

1
Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay.
Front Microbiol. 2019 Apr 12;10:758. doi: 10.3389/fmicb.2019.00758. eCollection 2019.
2
Pyrite formation from FeS and HS is mediated through microbial redox activity.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6897-6902. doi: 10.1073/pnas.1814412116. Epub 2019 Mar 18.
3
Role of APS reductase in biogeochemical sulfur isotope fractionation.
Nat Commun. 2019 Jan 9;10(1):44. doi: 10.1038/s41467-018-07878-4.
4
Cryptic CH cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea.
ISME J. 2019 Feb;13(2):250-262. doi: 10.1038/s41396-018-0273-z. Epub 2018 Sep 7.
5
Long-distance electron transport in individual, living cable bacteria.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):5786-5791. doi: 10.1073/pnas.1800367115. Epub 2018 May 7.
7
Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis.
Front Microbiol. 2018 Mar 2;9:309. doi: 10.3389/fmicb.2018.00309. eCollection 2018.
8
Sulfur Isotope Fractionation by Sulfate-Reducing Microbes Can Reflect Past Physiology.
Environ Sci Technol. 2018 Apr 3;52(7):4013-4022. doi: 10.1021/acs.est.7b05119. Epub 2018 Mar 15.
9
Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle.
ISME J. 2018 Jun;12(7):1715-1728. doi: 10.1038/s41396-018-0078-0. Epub 2018 Feb 21.
10
Turnover Rates of Intermediate Sulfur Species (, S, S, S, ) in Anoxic Freshwater and Sediments.
Front Microbiol. 2017 Dec 21;8:2551. doi: 10.3389/fmicb.2017.02551. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验