Department of Earth and Planetary Science, Berkeley, CA, USA.
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
ISME J. 2018 Jun;12(7):1715-1728. doi: 10.1038/s41396-018-0078-0. Epub 2018 Feb 21.
A critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate/sulfite reduction in the genomes of organisms from 13 bacterial and archaeal phyla, thereby more than doubling the number of microbial phyla associated with this process. Eight of the 13 newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Organisms from Verrucomicrobia and two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota, contain some of the earliest evolved dsrAB genes. The capacity for sulfite reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of modulating sulfur metabolism in associated cells has been acquired by putatively symbiotic bacteria. We conclude that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth's ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.
在地球的硫生物地球化学循环中,一个关键步骤是微生物硫酸盐还原,然而,只有相对较少的谱系中的生物体被牵涉到这个过程中。以前使用功能标记基因的研究检测到了丰富的、新颖的异化亚硫酸盐还原酶(DsrAB),这些酶可以赋予微生物亚硫酸盐/硫酸盐还原的能力,但与已知的生物体没有关联。因此,很大一部分硫酸盐/亚硫酸盐还原微生物的身份仍然难以捉摸。在这里,我们报告了在 13 个细菌和古菌门的生物体基因组中发现硫酸盐/亚硫酸盐还原的能力,从而使与该过程相关的微生物门的数量增加了一倍以上。在新发现的 13 个群体中,有 8 个是候选门,它们缺乏分离的代表,这一发现只有在宏基因组的基因组的情况下才有可能。疣微菌门和两个候选门(Candidatus Rokubacteria 和 Candidatus Hydrothermarchaeota)的生物体含有一些最早进化的 dsrAB 基因。在一些门内,亚硫酸盐还原的能力已经发生了多次横向转移,而一个潜在地能够调节相关细胞中硫代谢的关键基因已经被假定的共生细菌获得。我们的结论是,基于系统发育的当前功能预测极大地低估了硫酸盐/亚硫酸盐还原在地球生态系统中的广泛程度。了解这种能力的普遍性对于解释碳循环至关重要,因为硫酸盐还原通常与埋藏有机碳的周转有关。我们的发现扩展了与环境中硫转化相关的微生物群体的多样性,并促使根据微生物群落组成修订生物地球化学过程模型。