Suppr超能文献

利用基因编码的荧光寿命传感器对神经元葡萄糖浓度进行定量活体成像。

Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, Massachusetts.

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.

出版信息

J Neurosci Res. 2019 Aug;97(8):946-960. doi: 10.1002/jnr.24433. Epub 2019 May 20.

Abstract

Glucose is an essential source of energy for the brain. Recently, the development of genetically encoded fluorescent biosensors has allowed real time visualization of glucose dynamics from individual neurons and astrocytes. A major difficulty for this approach, even for ratiometric sensors, is the lack of a practical method to convert such measurements into actual concentrations in ex vivo brain tissue or in vivo. Fluorescence lifetime imaging provides a strategy to overcome this. In a previous study, we reported the lifetime glucose sensor iGlucoSnFR-TS (then called SweetieTS) for monitoring changes in neuronal glucose levels in response to stimulation. This genetically encoded sensor was generated by combining the Thermus thermophilus glucose-binding protein with a circularly permuted variant of the monomeric fluorescent protein T-Sapphire. Here, we provide more details on iGlucoSnFR-TS design and characterization, as well as pH and temperature sensitivities. For accurate estimation of glucose concentrations, the sensor must be calibrated at the same temperature as the experiments. We find that when the extracellular glucose concentration is in the range 2-10 mM, the intracellular glucose concentration in hippocampal neurons from acute brain slices is 20% of the nominal external glucose concentration (0.4-2 mM). We also measured the cytosolic neuronal glucose concentration in vivo, finding a range of ~0.7-2.5 mM in cortical neurons from awake mice.

摘要

葡萄糖是大脑的重要能量来源。最近,基因编码的荧光生物传感器的发展使得能够实时可视化单个神经元和星形胶质细胞中的葡萄糖动态。即使对于比率传感器,这种方法也存在一个主要的困难,即缺乏将此类测量值转换为实际浓度的实用方法,无论是在离体脑组织中还是在体内。荧光寿命成像提供了一种克服该问题的策略。在之前的一项研究中,我们报告了用于监测刺激引起的神经元葡萄糖水平变化的寿命葡萄糖传感器 iGlucoSnFR-TS(当时称为 SweetieTS)。该基因编码传感器是通过将嗜热栖热菌葡萄糖结合蛋白与单体荧光蛋白 T-Sapphire 的环状排列变体相结合而产生的。在这里,我们提供了有关 iGlucoSnFR-TS 设计和特性以及 pH 和温度敏感性的更多详细信息。为了准确估计葡萄糖浓度,传感器必须在与实验相同的温度下进行校准。我们发现,当细胞外葡萄糖浓度在 2-10 mM 范围内时,急性脑切片中海马神经元的细胞内葡萄糖浓度约为名义外葡萄糖浓度(~0.4-2 mM)的 20%。我们还测量了清醒小鼠皮质神经元的细胞内神经元葡萄糖浓度,发现范围约为 0.7-2.5 mM。

相似文献

1
Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor.
J Neurosci Res. 2019 Aug;97(8):946-960. doi: 10.1002/jnr.24433. Epub 2019 May 20.
2
Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes.
Nat Methods. 2014 Feb;11(2):175-82. doi: 10.1038/nmeth.2773. Epub 2014 Jan 5.
3
Response properties of the genetically encoded optical H2O2 sensor HyPer.
Free Radic Biol Med. 2014 Nov;76:227-41. doi: 10.1016/j.freeradbiomed.2014.07.045. Epub 2014 Aug 30.
4
Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
Antioxid Redox Signal. 2016 Oct 1;25(10):553-63. doi: 10.1089/ars.2015.6593. Epub 2016 Mar 18.
6
A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium.
Nat Commun. 2021 Dec 9;12(1):7159. doi: 10.1038/s41467-021-27249-w.
8
Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor.
Biochem Biophys Res Commun. 2017 Dec 2;493(4):1518-1521. doi: 10.1016/j.bbrc.2017.09.170. Epub 2017 Oct 3.
10
Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.
J Cereb Blood Flow Metab. 2019 Mar;39(3):513-523. doi: 10.1177/0271678X17737012. Epub 2017 Oct 30.

引用本文的文献

1
High-performance genetically-encoded green and red fluorescent biosensors for pyruvate.
bioRxiv. 2025 Jul 9:2025.04.17.649293. doi: 10.1101/2025.04.17.649293.
2
Low-Glucose Culture Conditions Bias Neuronal Energetics Towards Oxidative Phosphorylation.
J Neurochem. 2025 Jun;169(6):e70125. doi: 10.1111/jnc.70125.
3
Deep Learning for Fluorescence Lifetime Predictions Enables High-Throughput In Vivo Imaging.
J Am Chem Soc. 2025 Jul 2;147(26):22609-22621. doi: 10.1021/jacs.5c03749. Epub 2025 Jun 14.
4
A low-cost FPGA-based approach for pile-up corrected high-speed FLIM imaging.
Neurophotonics. 2025 Apr;12(2):025009. doi: 10.1117/1.NPh.12.2.025009. Epub 2025 May 5.
5
RIBOsensor for FRET-based, real-time ribose measurements in live cells.
Chem Sci. 2025 Apr 8;16(18):8125-8135. doi: 10.1039/d5sc00244c. eCollection 2025 May 7.
6
RPE-specific MCT2 expression promotes cone survival in models of retinitis pigmentosa.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2421978122. doi: 10.1073/pnas.2421978122. Epub 2025 Apr 3.
7
Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation.
Cell Stem Cell. 2025 May 1;32(5):795-810.e10. doi: 10.1016/j.stem.2025.02.017. Epub 2025 Mar 21.
8
State-dependent motion of a genetically encoded fluorescent biosensor.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2426324122. doi: 10.1073/pnas.2426324122. Epub 2025 Mar 6.
9
Genetically Encoded Metabolic Sensors to Study Retina Metabolism.
Adv Exp Med Biol. 2025;1468:465-469. doi: 10.1007/978-3-031-76550-6_76.
10
In Vivo Neurodynamics Mapping via High-Speed Two-Photon Fluorescence Lifetime Volumetric Projection Microscopy.
Adv Sci (Weinh). 2025 Feb;12(7):e2410605. doi: 10.1002/advs.202410605. Epub 2024 Dec 23.

本文引用的文献

1
In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor.
Cell Rep. 2021 Jun 22;35(12):109284. doi: 10.1016/j.celrep.2021.109284.
2
Supragranular Pyramidal Cells Exhibit Early Metabolic Alterations in the 3xTg-AD Mouse Model of Alzheimer's Disease.
Front Cell Neurosci. 2018 Jul 18;12:216. doi: 10.3389/fncel.2018.00216. eCollection 2018.
3
Metabolomics and Isotope Tracing.
Cell. 2018 May 3;173(4):822-837. doi: 10.1016/j.cell.2018.03.055.
6
Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue.
J Cereb Blood Flow Metab. 2019 Mar;39(3):513-523. doi: 10.1177/0271678X17737012. Epub 2017 Oct 30.
7
Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake.
Cell Metab. 2017 Aug 1;26(2):361-374.e4. doi: 10.1016/j.cmet.2017.06.021.
9
Non-signalling energy use in the developing rat brain.
J Cereb Blood Flow Metab. 2017 Mar;37(3):951-966. doi: 10.1177/0271678X16648710. Epub 2016 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验