Ahmadi Mina, Zhao Zhuangyu, Dmochowski Ivan J
Department of Chemistry, University of Pennsylvania Philadelphia PA USA
Chem Sci. 2025 Apr 8;16(18):8125-8135. doi: 10.1039/d5sc00244c. eCollection 2025 May 7.
d-Ribose is a building block of many essential biomolecules, including all nucleic acids, and its supplementation can enhance energy production, particularly under stress conditions such as ischemia and heart failure. The distribution, biosynthesis, and regulation of ribose in mammalian systems remain poorly understood. To explore intracellular ribose dynamics, we developed a genetically encoded fluorescence resonance energy transfer (FRET) sensor using ribose binding protein (RBP) and enhanced cyan and yellow fluorescent proteins (FPs). The RIBOsensor, which positions one FP near the active site of RBP, achieves the necessary sensitivity for cellular imaging by increasing the FRET signal upon ribose binding, compared to traditional N- and C-terminal FP orientations. This sensor rapidly, reversibly, and selectively detects labile ribose in live cells-enabling longitudinal studies-and can be employed for intracellular ribose quantitation, which provides a valuable tool for investigating ribose transport and metabolism in normal and disease states.
D-核糖是许多重要生物分子的组成成分,包括所有核酸,补充D-核糖可以增强能量产生,尤其是在缺血和心力衰竭等应激条件下。哺乳动物系统中核糖的分布、生物合成和调节仍知之甚少。为了探索细胞内核糖动态,我们利用核糖结合蛋白(RBP)以及增强型青色和黄色荧光蛋白(FPs)开发了一种基因编码的荧光共振能量转移(FRET)传感器。RIBOsensor将一种荧光蛋白置于RBP活性位点附近,与传统的N端和C端荧光蛋白方向相比,通过在核糖结合时增加FRET信号,实现了细胞成像所需的灵敏度。该传感器能够快速、可逆且选择性地检测活细胞中不稳定的核糖,从而进行纵向研究,还可用于细胞内核糖定量,这为研究正常和疾病状态下的核糖转运和代谢提供了一个有价值的工具。