The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
Institute for Learning & Brain Sciences and Department of Speech and Hearing Science, The University of Washington, Seattle, Washington, USA.
Hum Brain Mapp. 2019 Sep;40(13):3695-3711. doi: 10.1002/hbm.24626. Epub 2019 May 20.
The arcuate fasciculi are white-matter pathways that connect frontal and temporal lobes in each hemisphere. The arcuate plays a key role in the language network and is believed to be left-lateralized, in line with left hemisphere dominance for language. Measuring the arcuate in vivo requires diffusion magnetic resonance imaging-based tractography, but asymmetry of the in vivo arcuate is not always reliably detected in previous studies. It is unknown how the choice of tractography algorithm, with each method's freedoms, constraints, and vulnerabilities to false-positive and -negative errors, impacts findings of arcuate asymmetry. Here, we identify the arcuate in two independent datasets using a number of tractography strategies and methodological constraints, and assess their impact on estimates of arcuate laterality. We test three tractography methods: a deterministic, a probabilistic, and a tractography-evaluation (LiFE) algorithm. We extract the arcuate from the whole-brain tractogram, and compare it to an arcuate bundle constrained even further by selecting only those streamlines that connect to anatomically relevant cortical regions. We test arcuate macrostructure laterality, and also evaluate microstructure profiles for properties such as fractional anisotropy and quantitative R1. We find that both tractography choice and implementing the cortical constraints substantially impact estimates of all indices of arcuate laterality. Together, these results emphasize the effect of the tractography pipeline on estimates of arcuate laterality in both macrostructure and microstructure.
弓状束是连接大脑左右半球额颞叶的白质纤维束。弓状束在语言网络中起着关键作用,被认为是偏侧化的,与语言左半球优势一致。在活体中测量弓状束需要基于弥散磁共振成像的束追踪技术,但在之前的研究中,活体弓状束的不对称性并不总是可靠地检测到。目前尚不清楚追踪算法的选择(每种方法都有其自由度、限制以及易出现假阳性和假阴性错误的弱点)如何影响对弓状束不对称性的发现。在这里,我们使用多种追踪策略和方法学限制,在两个独立的数据集上识别弓状束,并评估它们对弓状束偏侧性估计的影响。我们测试了三种追踪方法:确定性方法、概率性方法和追踪评估(LiFE)算法。我们从全脑束追踪图中提取弓状束,并将其与通过仅选择那些连接到解剖学上相关皮质区域的束线进一步约束的弓状束束集进行比较。我们测试了弓状束宏观结构的偏侧性,并评估了各向异性分数和定量 R1 等微观结构特征的微观结构分布。我们发现,追踪选择和执行皮质约束都对所有弓状束偏侧性指标的估计产生了实质性影响。这些结果共同强调了追踪管道对弓状束在宏观和微观结构上的偏侧性估计的影响。