Suppr超能文献

N6-甲基腺苷修饰:与新型 RNA 结合蛋白的相互作用及其在信号转导中的作用。

N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction.

机构信息

a Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China.

b Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province , Sir Run Shaw Hospital, Zhejiang University , Hangzhou , China.

出版信息

RNA Biol. 2019 Aug;16(8):991-1000. doi: 10.1080/15476286.2019.1620060. Epub 2019 May 26.

Abstract

RNA epigenetics has received a great deal of attention in recent years, and the reversible N6-methyladenosine (m6A) modification on messenger RNAs (mRNAs) has emerged as a widespread phenomenon. The vital roles of m6A in diverse biological processes are dependent on many RNA-binding proteins (RBPs) with 'reader' or 'nonreader' functions. Moreover, m6A effector proteins affect cellular processes, such as stem cell differentiation, tumor development and the immune response by controlling signal transduction. This review provides an overview of the interactions of m6A with various RBPs, including the 'reader' proteins (excluding the YT521-B homology (YTH) domain proteins and the heterogeneous nuclear ribonucleoproteins (hnRNPs)), and the functional 'nonreader' proteins, and this review focuses on their specific RNA-binding domains and their associations with other m6A effectors. Furthermore, we summarize key m6A-marked targets in distinct signaling pathways, leading to a better understanding of the cellular m6A machinery.

摘要

近年来,RNA 表观遗传学受到了广泛关注,信使 RNA(mRNA)上可逆的 N6-甲基腺苷(m6A)修饰已成为一种广泛存在的现象。m6A 在多种生物过程中的重要作用依赖于具有“读取器”或“非读取器”功能的许多 RNA 结合蛋白(RBPs)。此外,m6A 效应蛋白通过控制信号转导,影响细胞过程,如干细胞分化、肿瘤发生和免疫反应。本综述概述了 m6A 与各种 RBP 的相互作用,包括“读取器”蛋白(不包括 YT521-B 同源(YTH)结构域蛋白和核不均一核糖核蛋白(hnRNPs))和功能“非读取器”蛋白,并重点介绍了它们特定的 RNA 结合结构域及其与其他 m6A 效应蛋白的关联。此外,我们总结了不同信号通路中关键的 m6A 标记靶标,有助于更好地理解细胞内的 m6A 机制。

相似文献

1
N6-methyladenosine modifications: interactions with novel RNA-binding proteins and roles in signal transduction.
RNA Biol. 2019 Aug;16(8):991-1000. doi: 10.1080/15476286.2019.1620060. Epub 2019 May 26.
2
Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets.
Hum Mol Genet. 2018 Nov 15;27(22):3936-3950. doi: 10.1093/hmg/ddy292.
3
The biological function of the N6-Methyladenosine reader YTHDC2 and its role in diseases.
J Transl Med. 2024 May 24;22(1):490. doi: 10.1186/s12967-024-05293-6.
4
mA-binding proteins: the emerging crucial performers in epigenetics.
J Hematol Oncol. 2020 Apr 10;13(1):35. doi: 10.1186/s13045-020-00872-8.
5
Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers.
Front Oncol. 2021 Apr 13;11:635329. doi: 10.3389/fonc.2021.635329. eCollection 2021.
6
Functions of N6-methyladenosine and its role in cancer.
Mol Cancer. 2019 Dec 4;18(1):176. doi: 10.1186/s12943-019-1109-9.
7
N6-methyladenosine promotes TNF mRNA degradation in CD4+ T lymphocytes.
J Leukoc Biol. 2024 Oct 1;116(4):807-815. doi: 10.1093/jleuko/qiae087.
8
RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer.
J Exp Clin Cancer Res. 2020 Sep 29;39(1):203. doi: 10.1186/s13046-020-01714-8.
9
Understanding mA Function Through Uncovering the Diversity Roles of YTH Domain-Containing Proteins.
Mol Biotechnol. 2019 May;61(5):355-364. doi: 10.1007/s12033-018-00149-z.
10
A Review in Research Progress Concerning m6A Methylation and Immunoregulation.
Front Immunol. 2019 Apr 26;10:922. doi: 10.3389/fimmu.2019.00922. eCollection 2019.

引用本文的文献

3
RBPWorld for exploring functions and disease associations of RNA-binding proteins across species.
Nucleic Acids Res. 2025 Jan 6;53(D1):D220-D232. doi: 10.1093/nar/gkae1028.
5
Ferroptosis: a critical mechanism of N-methyladenosine modification involved in carcinogenesis and tumor progression.
Sci China Life Sci. 2024 Jun;67(6):1119-1132. doi: 10.1007/s11427-023-2474-4. Epub 2024 Feb 28.
7
Understanding YTHDF2-mediated mRNA degradation by m6A-BERT-Deg.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae170.
10
Do RNA modifications contribute to modulation of immune responses in allergic diseases?
Front Allergy. 2023 Nov 13;4:1277244. doi: 10.3389/falgy.2023.1277244. eCollection 2023.

本文引用的文献

2
The mA methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network.
Oncogene. 2019 May;38(19):3667-3680. doi: 10.1038/s41388-019-0683-z. Epub 2019 Jan 18.
3
mA modification controls the innate immune response to infection by targeting type I interferons.
Nat Immunol. 2019 Feb;20(2):173-182. doi: 10.1038/s41590-018-0275-z. Epub 2018 Dec 17.
4
mA-epitranscriptome modulates memory strength.
Cell Res. 2019 Jan;29(1):4-5. doi: 10.1038/s41422-018-0121-8.
5
A novel mA reader Prrc2a controls oligodendroglial specification and myelination.
Cell Res. 2019 Jan;29(1):23-41. doi: 10.1038/s41422-018-0113-8. Epub 2018 Dec 4.
6
Cap-specific terminal -methylation of RNA by an RNA polymerase II-associated methyltransferase.
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aav0080. Epub 2018 Nov 22.
7
RNA m A modification enzymes shape innate responses to DNA by regulating interferon β.
Genes Dev. 2018 Dec 1;32(23-24):1472-1484. doi: 10.1101/gad.319475.118. Epub 2018 Nov 21.
9
Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of mA mRNA Methylation.
Cell Rep. 2018 Nov 13;25(7):1816-1828.e4. doi: 10.1016/j.celrep.2018.10.068.
10
mA facilitates hippocampus-dependent learning and memory through YTHDF1.
Nature. 2018 Nov;563(7730):249-253. doi: 10.1038/s41586-018-0666-1. Epub 2018 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验