Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, USA.
Simulations Plus, Inc., 42505 10th Street West, Lancaster, California, 93534, USA.
AAPS J. 2019 May 20;21(4):65. doi: 10.1208/s12248-019-0334-x.
Developing mathematical models to predict changes in ocular bioavailability and pharmacokinetics due to differences in the physicochemical properties of complex topical ophthalmic suspension formulations is important in drug product development and regulatory assessment. Herein, we used published FDA clinical pharmacology review data, in-house, and literature rabbit pharmacokinetic data generated for dexamethasone ophthalmic suspensions to demonstrate how the mechanistic Ocular Compartmental Absorption and Transit model by GastroPlus™ can be used to characterize ocular drug pharmacokinetic performance in rabbits for suspension formulations. This model was used to describe the dose-dependent (0.01 to 0.1%) non-linear pharmacokinetic in ocular tissues and characterize the impact of viscosity (1.67 to 72.9 cP) and particle size (5.5 to 22 μm) on in vivo ocular drug absorption and disposition. Parameter sensitivity analysis (hypothetical suspension particle size: 1 to 10 μm, viscosity: 1 to 100 cP) demonstrated that the interplay between formulation properties and physiological clearance through drainage and tear turnover rates in the pre-corneal compartment drives the ocular drug bioavailability. The quick removal of drug suspended particles from the pre-corneal compartment renders the impact of particle size inconsequential relative to viscosity modification. The in vivo ocular absorption is (1) viscosity non-sensitive when the viscosity is high and the impact of viscosity on the pre-corneal residence time reaches the maximum physiological system capacity or (2) viscosity sensitive when the viscosity is below a certain limit. This study reinforces our understanding of the interplay between physiological factors and ophthalmic formulation physicochemical properties and their impact on in vivo ocular drug PK performance in rabbits.
开发用于预测由于复杂局部眼用混悬剂制剂的物理化学性质差异而导致的眼部生物利用度和药代动力学变化的数学模型对于药物产品开发和监管评估非常重要。在此,我们使用了已发表的 FDA 临床药理学审查数据、内部数据和文献中兔药代动力学数据,展示了 GastroPlus™的机械性眼部室分吸收和转运模型如何用于描述混悬剂制剂兔眼部药物药代动力学性能。该模型用于描述眼部组织中剂量依赖性(0.01 至 0.1%)非线性药代动力学,并表征了粘度(1.67 至 72.9 cP)和粒径(5.5 至 22 μm)对体内眼部药物吸收和处置的影响。参数敏感性分析(假设混悬剂粒径:1 至 10 μm,粘度:1 至 100 cP)表明,制剂特性与通过预角膜隔室中的引流和泪液周转率清除之间的相互作用驱动眼部药物生物利用度。药物混悬颗粒从预角膜隔室中快速清除,使得粒径的影响相对于粘度变化变得微不足道。体内眼部吸收(1)在粘度高且粘度对预角膜停留时间的影响达到最大生理系统容量时,对粘度不敏感,或(2)在粘度低于一定限度时,对粘度敏感。这项研究加强了我们对生理因素与局部眼用制剂物理化学性质之间相互作用及其对兔体内眼部药物 PK 性能影响的理解。