Suppr超能文献

DNA 特异性调节人转录因子 A 与线粒体 DNA 控制区的结合。

DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region.

机构信息

Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain.

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.

出版信息

Nucleic Acids Res. 2019 Jul 9;47(12):6519-6537. doi: 10.1093/nar/gkz406.

Abstract

Human mitochondrial DNA (h-mtDNA) codes for 13 subunits of the oxidative phosphorylation pathway, the essential route that produces ATP. H-mtDNA transcription and replication depends on the transcription factor TFAM, which also maintains and compacts this genome. It is well-established that TFAM activates the mtDNA promoters LSP and HSP1 at the mtDNA control region where DNA regulatory elements cluster. Previous studies identified still uncharacterized, additional binding sites at the control region downstream from and slightly similar to LSP, namely sequences X and Y (Site-X and Site-Y) (Fisher et al., Cell 50, pp 247-258, 1987). Here, we explore TFAM binding at these two sites and compare them to LSP by multiple experimental and in silico methods. Our results show that TFAM binding is strongly modulated by the sequence-dependent properties of Site-X, Site-Y and LSP. The high binding versatility of Site-Y or the considerable stiffness of Site-X tune TFAM interactions. In addition, we show that increase in TFAM/DNA complex concentration induces multimerization, which at a very high concentration triggers disruption of preformed complexes. Therefore, our results suggest that mtDNA sequences induce non-uniform TFAM binding and, consequently, direct an uneven distribution of TFAM aggregation sites during the essential process of mtDNA compaction.

摘要

人线粒体 DNA(h-mtDNA)编码氧化磷酸化途径的 13 个亚基,这是产生 ATP 的必要途径。h-mtDNA 的转录和复制依赖于转录因子 TFAM,它还维持和压缩这个基因组。众所周知,TFAM 在 mtDNA 控制区激活 mtDNA 启动子 LSP 和 HSP1,而 DNA 调节元件在该区域聚集。先前的研究在 LSP 的下游和稍相似的位置(即序列 X 和 Y(Site-X 和 Site-Y))确定了尚未被表征的其他结合位点(Fisher 等人,Cell 50,第 247-258 页,1987 年)。在这里,我们通过多种实验和计算方法探索 TFAM 在这两个位点的结合,并将其与 LSP 进行比较。我们的结果表明,TFAM 结合受 Site-X、Site-Y 和 LSP 的序列依赖性特性强烈调节。Site-Y 的高结合多功能性或 Site-X 的相当大的刚性调节 TFAM 相互作用。此外,我们表明 TFAM/DNA 复合物浓度的增加诱导多聚化,而在非常高的浓度下,会触发预形成复合物的破坏。因此,我们的结果表明 mtDNA 序列诱导非均匀的 TFAM 结合,并因此在 mtDNA 压缩的基本过程中直接导致 TFAM 聚集位点的不均匀分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a256/6614842/9f1c962d0156/gkz406fig1.jpg

相似文献

1
DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region.
Nucleic Acids Res. 2019 Jul 9;47(12):6519-6537. doi: 10.1093/nar/gkz406.
2
Cytosine methylation of mitochondrial DNA at CpG sequences impacts transcription factor A DNA binding and transcription.
Biochim Biophys Acta Gene Regul Mech. 2019 May;1862(5):598-607. doi: 10.1016/j.bbagrm.2019.01.006. Epub 2019 Feb 23.
4
U-turn DNA bending by human mitochondrial transcription factor A.
Curr Opin Struct Biol. 2013 Feb;23(1):116-24. doi: 10.1016/j.sbi.2012.12.004. Epub 2013 Jan 16.
5
Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites.
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17792-17799. doi: 10.1073/pnas.1911252116. Epub 2019 Aug 14.
6
Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6513-8. doi: 10.1073/pnas.1118710109. Epub 2012 Apr 9.
8
Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA.
Mol Cell Biol. 2004 Nov;24(22):9823-34. doi: 10.1128/MCB.24.22.9823-9834.2004.
9
The C-terminal tail of mitochondrial transcription factor a markedly strengthens its general binding to DNA.
J Biochem. 2007 Feb;141(2):201-11. doi: 10.1093/jb/mvm020. Epub 2006 Dec 13.
10
Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA.
Nucleic Acids Res. 2012 Jan;40(2):614-24. doi: 10.1093/nar/gkr787. Epub 2011 Sep 23.

引用本文的文献

1
Epigenetic Threads of Neurodegeneration: TFAM's Intricate Role in Mitochondrial Transcription.
CNS Neurol Disord Drug Targets. 2025;24(6):422-433. doi: 10.2174/0118715273334342250108043032.
3
Complexes of HMO1 with DNA: Structure and Affinity.
Biomolecules. 2024 Sep 20;14(9):1184. doi: 10.3390/biom14091184.
6
Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA.
Nat Struct Mol Biol. 2024 Mar;31(3):568-577. doi: 10.1038/s41594-024-01225-6. Epub 2024 Feb 12.
9
Key Amino Acid Residues of Mitochondrial Transcription Factor A Synergize with Abasic (AP) Site Dynamics To Facilitate AP-Lyase Reactions.
ACS Chem Biol. 2023 May 19;18(5):1168-1179. doi: 10.1021/acschembio.3c00047. Epub 2023 Mar 17.
10
DNA-protein cross-links between abasic DNA damage and mitochondrial transcription factor A (TFAM).
Nucleic Acids Res. 2023 Jan 11;51(1):41-53. doi: 10.1093/nar/gkac1214.

本文引用的文献

2
A common pattern of DNase I footprinting throughout the human mtDNA unveils clues for a chromatin-like organization.
Genome Res. 2018 Aug;28(8):1158-1168. doi: 10.1101/gr.230409.117. Epub 2018 Jul 12.
3
Mitochondria are physiologically maintained at close to 50 °C.
PLoS Biol. 2018 Jan 25;16(1):e2003992. doi: 10.1371/journal.pbio.2003992. eCollection 2018 Jan.
4
Protein Flexibility and Synergy of HMG Domains Underlie U-Turn Bending of DNA by TFAM in Solution.
Biophys J. 2018 May 22;114(10):2386-2396. doi: 10.1016/j.bpj.2017.11.3743. Epub 2017 Dec 13.
5
Functional Mitochondria in Health and Disease.
Front Endocrinol (Lausanne). 2017 Nov 3;8:296. doi: 10.3389/fendo.2017.00296. eCollection 2017.
6
Structural Basis of Mitochondrial Transcription Initiation.
Cell. 2017 Nov 16;171(5):1072-1081.e10. doi: 10.1016/j.cell.2017.10.036.
7
Mechanism of Transcription Anti-termination in Human Mitochondria.
Cell. 2017 Nov 16;171(5):1082-1093.e13. doi: 10.1016/j.cell.2017.09.035. Epub 2017 Oct 12.
10
Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity.
Mech Ageing Dev. 2017 Mar;162:108-121. doi: 10.1016/j.mad.2016.12.005. Epub 2016 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验