Suppr超能文献

携带铬酸盐抗性质粒的荧光假单胞菌对铬酸盐的摄取减少。

Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.

作者信息

Ohtake H, Cervantes C, Silver S

出版信息

J Bacteriol. 1987 Aug;169(8):3853-6. doi: 10.1128/jb.169.8.3853-3856.1987.

Abstract

CrO4(2-) resistance in Pseudomonas fluorescens LB300(pLHB1) was related to reduced uptake of CrO4(2-) relative to the plasmidless strain LB303. 51CrO4(2-) was transported mainly via the SO4(2-) active transport system; thus, cells grown with 0.15 mM cysteine, a repressor of the SO4(2-) transport system, were much more resistant to CrO4(2-) than those grown with 0.15 mM djenkolic acid, which derepressed the 35SrO4(2-) uptake system. Kinetics of 51CrO4(2-) uptake by P. fluorescens with and without the plasmid showed that the Vmax for 51CrO4(2-) uptake with the resistant strain was 2.2 times less than the Vmax for the sensitive strain, whereas the Km remained constant.

摘要

荧光假单胞菌LB300(pLHB1)对CrO4(2-)的抗性与相对于无质粒菌株LB303而言CrO4(2-)摄取减少有关。51CrO4(2-)主要通过SO4(2-)主动转运系统进行转运;因此,用0.15 mM半胱氨酸(SO4(2-)转运系统的一种阻遏物)培养的细胞比用0.15 mM 豆科氨酸(它可解除35SrO4(2-)摄取系统的阻遏)培养的细胞对CrO4(2-)的抗性要强得多。有质粒和无质粒的荧光假单胞菌对51CrO4(2-)的摄取动力学表明,抗性菌株对51CrO4(2-)的摄取Vmax比敏感菌株的Vmax低2.2倍,而Km保持不变。

相似文献

1
Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid.
J Bacteriol. 1987 Aug;169(8):3853-6. doi: 10.1128/jb.169.8.3853-3856.1987.
2
Chromate resistance plasmid in Pseudomonas fluorescens.
J Bacteriol. 1983 Sep;155(3):1105-9. doi: 10.1128/jb.155.3.1105-1109.1983.
3
Chromate-resistance in a chromate-reducing strain of Enterobacter cloacae.
FEMS Microbiol Lett. 1990 Jan 15;55(1-2):85-8. doi: 10.1016/0378-1097(90)90173-n.
4
Plasmid chromate resistance and chromate reduction.
Plasmid. 1992 Jan;27(1):65-71. doi: 10.1016/0147-619x(92)90007-w.
6
Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli.
FEMS Microbiol Lett. 2008 Aug;285(1):97-100. doi: 10.1111/j.1574-6968.2008.01220.x. Epub 2008 Jun 3.
7
Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a.
Appl Environ Microbiol. 2000 Dec;66(12):5387-92. doi: 10.1128/AEM.66.12.5387-5392.2000.
8
Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa.
J Bacteriol. 1999 Dec;181(23):7398-400. doi: 10.1128/JB.181.23.7398-7400.1999.
10
Naphthalene uptake by a Pseudomonas fluorescens isolate.
Can J Microbiol. 1998 Nov;44(11):1086-93. doi: 10.1139/cjm-44-11-1086.

引用本文的文献

1
The Pd (II) Reduction Mechanisms in Y-4 Revealed by Proteomic Analysis.
Nanomaterials (Basel). 2024 Mar 12;14(6):512. doi: 10.3390/nano14060512.
2
The Impact of Chromate on Molybdenum Homeostasis.
Front Microbiol. 2022 May 24;13:903146. doi: 10.3389/fmicb.2022.903146. eCollection 2022.
3
Interactions Between Microplastics and Heavy Metals in Aquatic Environments: A Review.
Front Microbiol. 2021 Apr 22;12:652520. doi: 10.3389/fmicb.2021.652520. eCollection 2021.
4
Successive use of microorganisms to remove chromium from wastewater.
Appl Microbiol Biotechnol. 2020 May;104(9):3729-3743. doi: 10.1007/s00253-020-10533-y. Epub 2020 Mar 14.
5
Accessory genome of the multi-drug resistant ocular isolate of Pseudomonas aeruginosa PA34.
PLoS One. 2019 Apr 15;14(4):e0215038. doi: 10.1371/journal.pone.0215038. eCollection 2019.
6
Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris.
Appl Microbiol Biotechnol. 2018 Mar;102(6):2839-2850. doi: 10.1007/s00253-017-8724-4. Epub 2018 Feb 10.
7
The cyanobacterium Synechocystis sp. PUPCCC 62: a potential candidate for biotransformation of Cr(VI) to Cr(III) in the presence of sulphate.
Environ Sci Pollut Res Int. 2015 Jul;22(14):10661-8. doi: 10.1007/s11356-015-4260-x. Epub 2015 Mar 11.
8
Hexavalent Chromium Reduction and Accumulation by Acinetobacter AB1 Isolated from Fez Tanneries in Morocco.
Indian J Microbiol. 2012 Mar;52(1):48-53. doi: 10.1007/s12088-011-0187-1. Epub 2011 Jun 3.
9
In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil.
Environ Sci Pollut Res Int. 2013 Mar;20(3):1661-74. doi: 10.1007/s11356-012-1178-4. Epub 2012 Sep 15.

本文引用的文献

1
Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus.
J Bacteriol. 1981 Aug;147(2):313-9. doi: 10.1128/jb.147.2.313-319.1981.
2
Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus.
J Bacteriol. 1981 Aug;147(2):305-12. doi: 10.1128/jb.147.2.305-312.1981.
5
Energetics of plasmid-mediated arsenate resistance in Escherichia coli.
Proc Natl Acad Sci U S A. 1982 Oct;79(20):6119-22. doi: 10.1073/pnas.79.20.6119.
6
Bacterial transformations of and resistances to heavy metals.
Basic Life Sci. 1984;28:23-46. doi: 10.1007/978-1-4684-4715-6_3.
7
Chromate resistance plasmid in Pseudomonas fluorescens.
J Bacteriol. 1983 Sep;155(3):1105-9. doi: 10.1128/jb.155.3.1105-1109.1983.
8
Genetics of sulfate transport by Salmonella typhimurium.
J Bacteriol. 1971 Mar;105(3):1053-62. doi: 10.1128/jb.105.3.1053-1062.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验