Suppr超能文献

一种用于医疗保健环境中牙周炎筛查的快速、非侵入性工具。

A rapid, non-invasive tool for periodontitis screening in a medical care setting.

机构信息

Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, the Netherlands.

Department of Comprehensive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Gustav, Mahlerlaan 3004, 1081, LA, Amsterdam, the Netherlands.

出版信息

BMC Oral Health. 2019 May 23;19(1):87. doi: 10.1186/s12903-019-0784-7.

Abstract

BACKGROUND

Since periodontitis is bi-directionally associated with several systemic diseases, such as diabetes mellitus and cardiovascular diseases, it is important for medical professionals in a non-dental setting to be able examine their patients for symptoms of periodontitis, and urge them to visit a dentist if necessary. However, they often lack the time, knowledge and resources to do so. We aim to develop and assess "quick and easy" screening tools for periodontitis, based on self-reported oral health (SROH), demographics and/or salivary biomarkers, intended for use by medical professionals in a non-dental setting.

METHODS

Consecutive, new patients from our outpatient clinic were recruited. A SROH questionnaire (8 questions) was conducted, followed by a 30 s oral rinse sampling protocol. A complete clinical periodontal examination provided the golden standard periodontitis classification: no/mild, moderate or severe periodontitis. Total periodontitis was defined as having either moderate or severe. Albumin and matrix metalloproteinase-8 concentrations, and chitinase and protease activities were measured in the oral rinses. Binary logistic regression analyses with backward elimination were used to create prediction models for both total and severe periodontitis. Model 1 included SROH, demographics and biomarkers. The biomarkers were omitted in the analysis for model 2, while model 3 only included the SROH questionnaire. The area under the receiver operating characteristic curves (AUROCC) provided the accuracy of each model. The regression equations were used to create scoring algorithms, composed of the remaining predictors, each with its own weight.

RESULTS

Of the 156 patients participating in this study, 67% were classified with total periodontitis and 33% had severe periodontitis. The models for total periodontitis achieved an AUROCC of 0.91 for model 1, 0.88 for model 2 and 0.81 for model 3. For severe periodontitis, this was 0.89 for model 1, 0.82 for model 2 and 0.78 for model 3. The algorithm for total periodontitis (model 2), which we consider valid for the Dutch population, was applied to create a freely accessible, web-based screening tool.

CONCLUSIONS

The prediction models for total and severe periodontitis proved to be feasible and accurate, resulting in easily applicable screening tools, intended for a non-dental setting.

摘要

背景

由于牙周炎与多种系统性疾病(如糖尿病和心血管疾病)双向相关,因此对于非牙科环境中的医疗专业人员来说,能够检查患者是否有牙周炎症状并在必要时敦促他们去看牙医非常重要。然而,他们通常缺乏时间、知识和资源来做到这一点。我们旨在基于自我报告的口腔健康(SROH)、人口统计学和/或唾液生物标志物,为非牙科环境中的医疗专业人员开发和评估用于牙周炎的“快速简便”筛查工具。

方法

连续招募我们门诊诊所的新患者。进行 SROH 问卷(8 个问题),然后进行 30 秒的口腔冲洗采样方案。完整的临床牙周检查提供了牙周炎分类的金标准:无/轻度、中度或重度牙周炎。总牙周炎的定义为中度或重度。测量口腔冲洗液中的白蛋白和基质金属蛋白酶-8 浓度以及壳聚糖酶和蛋白酶活性。使用向后消除的二元逻辑回归分析为总牙周炎和严重牙周炎创建预测模型。模型 1 包括 SROH、人口统计学和生物标志物。在分析中省略了模型 2 的生物标志物,而模型 3 仅包括 SROH 问卷。接收者操作特征曲线下的面积(AUROCC)提供了每个模型的准确性。回归方程用于创建评分算法,由剩余的预测因子组成,每个预测因子都有自己的权重。

结果

在参与本研究的 156 名患者中,67%被归类为总牙周炎,33%患有严重牙周炎。总牙周炎的模型获得了模型 1 的 AUROCC 为 0.91,模型 2 为 0.88,模型 3 为 0.81。对于严重牙周炎,模型 1 为 0.89,模型 2 为 0.82,模型 3 为 0.78。我们认为适用于荷兰人口的总牙周炎算法(模型 2)被应用于创建一个免费的、基于网络的筛查工具。

结论

总牙周炎和严重牙周炎的预测模型被证明是可行且准确的,产生了易于应用的筛查工具,适用于非牙科环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e5/6533660/c883b23e9eab/12903_2019_784_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验