Suppr超能文献

植物细胞能量传感器 SnRK1 的默认激活和核易位调节代谢应激反应和发育。

Default Activation and Nuclear Translocation of the Plant Cellular Energy Sensor SnRK1 Regulate Metabolic Stress Responses and Development.

机构信息

Laboratory for Molecular Plant Biology, Biology Department, Katholieke Universiteit Leuven, 3001 Heverlee-Leuven, Belgium.

Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114.

出版信息

Plant Cell. 2019 Jul;31(7):1614-1632. doi: 10.1105/tpc.18.00500. Epub 2019 May 13.

Abstract

Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory β- and γ-subunits, responding to low cellular nucleotide charge. Here, we determined that the Arabidopsis () SnRK1 catalytic α-subunit has regulatory subunit-independent activity, which is consistent with default activation (and thus controlled repression), a strategy more generally used by plants. Low energy stress (caused by darkness, inhibited photosynthesis, or hypoxia) also triggers SnRK1α nuclear translocation, thereby controlling induced but not repressed target gene expression to replenish cellular energy for plant survival. The myristoylated and membrane-associated regulatory β-subunits restrict nuclear localization and inhibit target gene induction. Transgenic plants with forced SnRK1α-subunit localization consistently were affected in metabolic stress responses, but their analysis also revealed key roles for nuclear SnRK1 in leaf and root growth and development. Our findings suggest that plants have modified the ancient, highly conserved eukaryotic energy sensor to better fit their unique lifestyle and to more effectively cope with changing environmental conditions.

摘要

能量平衡对所有生物都至关重要。在真核生物中,这个过程由燃料检测蛋白激酶控制:哺乳动物中的 AMP 激活的蛋白激酶,酵母中的蔗糖非发酵 1(SNF1)()和植物中的 SNF1 相关激酶 1(SnRK1)。这些激酶在结构和功能上高度保守,(根据这一范式)作为催化-α和调节β-和γ-亚基的异三聚体复合物起作用,对低细胞核苷酸电荷做出反应。在这里,我们确定拟南芥()SnRK1 催化α亚基具有独立于调节亚基的活性,这与默认激活(因此受控制的抑制)一致,这是植物更普遍使用的策略。低能量应激(由黑暗、光合作用抑制或缺氧引起)也会触发 SnRK1α核易位,从而控制诱导但不抑制的靶基因表达,为植物生存补充细胞能量。豆蔻酰化和膜相关的调节β亚基限制核定位并抑制靶基因诱导。具有强制 SnRK1α-亚基定位的转基因植物在代谢应激反应中受到影响,但它们的分析也揭示了核 SnRK1 在叶片和根生长和发育中的关键作用。我们的发现表明,植物已经对古老的、高度保守的真核能量传感器进行了修饰,以更好地适应其独特的生活方式,并更有效地应对不断变化的环境条件。

相似文献

2
Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1.
J Exp Bot. 2019 Apr 15;70(8):2325-2338. doi: 10.1093/jxb/erz023.
4
SnRK1 from Arabidopsis thaliana is an atypical AMPK.
Plant J. 2015 Apr;82(2):183-92. doi: 10.1111/tpj.12813.
5
Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development.
Plant Physiol. 2012 Apr;158(4):1955-64. doi: 10.1104/pp.111.189829. Epub 2012 Jan 9.
6
Perturbations in plant energy homeostasis prime lateral root initiation via SnRK1-bZIP63-ARF19 signaling.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2106961118.
8
Convergent energy and stress signaling.
Trends Plant Sci. 2008 Sep;13(9):474-82. doi: 10.1016/j.tplants.2008.06.006. Epub 2008 Aug 11.
9
A complex containing SNF1-related kinase (SnRK1) and adenosine kinase in Arabidopsis.
PLoS One. 2014 Jan 30;9(1):e87592. doi: 10.1371/journal.pone.0087592. eCollection 2014.
10
Autophagy contributes to positive feedback regulation of SnRK1 signaling in plants.
Autophagy. 2023 Dec;19(12):3248-3250. doi: 10.1080/15548627.2023.2247741. Epub 2023 Aug 20.

引用本文的文献

2
Signalling and regulation of plant development by carbon/nitrogen balance.
Physiol Plant. 2025 Mar-Apr;177(2):e70228. doi: 10.1111/ppl.70228.
5
6
Genetic Analysis of the Peach SnRK1β3 Subunit and Its Function in Transgenic Tomato Plants.
Genes (Basel). 2024 Dec 6;15(12):1574. doi: 10.3390/genes15121574.
8
A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling.
Mol Cell Proteomics. 2024 Oct;23(10):100842. doi: 10.1016/j.mcpro.2024.100842. Epub 2024 Sep 20.
9
Sugar signaling modulates SHOOT MERISTEMLESS expression and meristem function in .
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2408699121. doi: 10.1073/pnas.2408699121. Epub 2024 Sep 6.
10
Hydrogen peroxide is required for light-induced stomatal opening across different plant species.
Nat Commun. 2024 Jun 14;15(1):5081. doi: 10.1038/s41467-024-49377-9.

本文引用的文献

1
Trehalose 6-Phosphate Positively Regulates Fatty Acid Synthesis by Stabilizing WRINKLED1.
Plant Cell. 2018 Oct;30(10):2616-2627. doi: 10.1105/tpc.18.00521. Epub 2018 Sep 24.
2
High Auxin and High Phosphate Impact on RSL2 Expression and ROS-Homeostasis Linked to Root Hair Growth in .
Front Plant Sci. 2018 Aug 14;9:1164. doi: 10.3389/fpls.2018.01164. eCollection 2018.
4
Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of Genes.
Plant Physiol. 2018 Sep;178(1):217-232. doi: 10.1104/pp.18.00327. Epub 2018 Jul 10.
5
Getting leaves into shape: a molecular, cellular, environmental and evolutionary view.
Development. 2018 Jul 10;145(13):dev161646. doi: 10.1242/dev.161646.
6
Molecular Mechanisms of Leaf Morphogenesis.
Mol Plant. 2018 Sep 10;11(9):1117-1134. doi: 10.1016/j.molp.2018.06.006. Epub 2018 Jun 28.
8
Darkened Leaves Use Different Metabolic Strategies for Senescence and Survival.
Plant Physiol. 2018 May;177(1):132-150. doi: 10.1104/pp.18.00062. Epub 2018 Mar 9.
9
FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis.
Plant J. 2018 Apr;94(2):232-245. doi: 10.1111/tpj.13854. Epub 2018 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验