Suppr超能文献

基于基因panel测序数据的肿瘤突变负荷计算评估

Assessment of tumor mutation burden calculation from gene panel sequencing data.

作者信息

Xu Zhenwu, Dai Jiawei, Wang Dandan, Lu Hui, Dai Heng, Ye Hao, Gu Jianlei, Chen Shengjia, Huang Bingding

机构信息

Department of Thoracic Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, People's Republic of China.

SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

出版信息

Onco Targets Ther. 2019 May 6;12:3401-3409. doi: 10.2147/OTT.S196638. eCollection 2019.

Abstract

High tumor mutation burden (TMB) is an emerging selection biomarker for immune checkpoint blockade in tumors such as melanoma and non-small cell lung cancer. TMB is typically calculated from whole genome sequencing or whole exome sequencing (WES) data. Recently, clinical trials showed that TMB can also be estimated from targeted sequencing of a panel of only a few hundred genes of interest, which can be performed at a high depth for clinical applications.  In this study, we systematically investigated the distribution of TMB and preferences at the gene and mutation level, as well as the correlation between TMB calculated by WES and panel sequencing data using somatic mutation data from 15 cancer types from The Cancer Genome Atlas (TCGA).  We proposed a pan-cancer TMB panel and demonstrated that it had a higher correlation with WES than other panels. Our panel could serve as a reference data-set for TMB-oriented panel design to identify patients for immunotherapy.

摘要

高肿瘤突变负荷(TMB)是黑色素瘤和非小细胞肺癌等肿瘤中免疫检查点阻断的一种新兴选择生物标志物。TMB通常根据全基因组测序或全外显子组测序(WES)数据计算得出。最近,临床试验表明,TMB也可以通过仅对几百个感兴趣基因进行靶向测序来估计,这种测序可以在临床应用中进行高深度检测。在本研究中,我们利用来自癌症基因组图谱(TCGA)的15种癌症类型的体细胞突变数据,系统地研究了TMB在基因和突变水平上的分布及偏好,以及WES计算的TMB与靶向测序数据之间的相关性。我们提出了一个泛癌TMB检测板,并证明它与WES的相关性高于其他检测板。我们的检测板可以作为面向TMB的检测板设计的参考数据集,以识别适合免疫治疗的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1917/6510391/13e5ed428dac/OTT-12-3401-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验