1Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA.
2Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 USA.
Commun Biol. 2019 May 21;2:194. doi: 10.1038/s42003-019-0431-5. eCollection 2019.
Hydrogen sulfide (HS) plays important roles in metabolism and health. Its enzymatic generation from sulfur-containing amino acids (SAAs) is well characterized. However, the existence of non-enzymatic HS production from SAAs, the chemical mechanism, and its biological implications remain unclear. Here we present non-enzymatic HS production in vitro and in blood via a reaction specific for the SAA cysteine serving as substrate and requires coordinated catalysis by Vitamin B, pyridoxal(phosphate), and iron under physiological conditions. An initial cysteine-aldimine is formed by nucleophilic attack of the cysteine amino group to the pyridoxal(phosphate) aldehyde group. Free or heme-bound iron drives the formation of a cysteine-quinonoid, thiol group elimination, and hydrolysis of the desulfurated aldimine back to pyridoxal(phosphate). The reaction ultimately produces pyruvate, NH, and HS. This work highlights enzymatic production is inducible and robust in select tissues, whereas iron-catalyzed production contributes underappreciated basal HS systemically with pathophysiological implications in hemolytic, iron overload, and hemorrhagic disorders.
硫化氢 (HS) 在新陈代谢和健康中发挥着重要作用。其来源于含硫氨基酸 (SAAs) 的酶促生成已得到很好的描述。然而,SAAs 非酶促 HS 生成的存在、化学机制及其生物学意义仍不清楚。本文通过特定的 SAAs 半胱氨酸作为底物的反应,在体外和血液中证明了非酶促 HS 的生成,该反应需要在生理条件下维生素 B、吡哆醛 (磷酸酯) 和铁的协调催化。一个初始的半胱氨酸-亚胺通过半胱氨酸氨基对吡哆醛 (磷酸酯) 醛基的亲核攻击形成。游离或亚铁血红素结合的铁驱动半胱氨酸-醌型的形成、硫醇基团的消除以及去硫亚胺的水解回到吡哆醛 (磷酸酯)。该反应最终产生丙酮酸、NH 和 HS。这项工作强调了酶促生成在特定组织中是可诱导和强大的,而铁催化生成则在全身以被低估的基础 HS 系统中发挥作用,对溶血性、铁过载和出血性疾病具有病理生理意义。