Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.
Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States.
J Phys Chem B. 2019 Jun 20;123(24):5048-5058. doi: 10.1021/acs.jpcb.9b02293. Epub 2019 Jun 11.
We report dynamic nuclear polarization (DNP)-enhanced magic-angle spinning (MAS) NMR spectroscopy in viral capsids from HIV-1 and bacteriophage AP205. Viruses regulate their life cycles and infectivity through modulation of their structures and dynamics. While static structures of capsids from several viruses are now accessible with near-atomic-level resolution, atomic-level understanding of functionally important motions in assembled capsids is lacking. We observed up to 64-fold signal enhancements by DNP, which permitted in-depth analysis of these assemblies. For the HIV-1 CA assemblies, a remarkably high spectral resolution in the 3D and 2D heteronuclear data sets permitted the assignment of a significant fraction of backbone and side-chain resonances. Using an integrated DNP MAS NMR and molecular dynamics (MD) simulation approach, the conformational space sampled by the assembled capsid at cryogenic temperatures was mapped. Qualitatively, a remarkable agreement was observed for the experimental C/N chemical shift distributions and those calculated from substructures along the MD trajectory. Residues that are mobile at physiological temperatures are frozen out in multiple conformers at cryogenic conditions, resulting in broad experimental and calculated chemical shift distributions. Overall, our results suggest that DNP MAS NMR measurements in combination with MD simulations facilitate a thorough understanding of the dynamic signatures of viral capsids.
我们报告了在 HIV-1 和噬菌体 AP205 的病毒衣壳中进行的动态核极化 (DNP)-增强魔角旋转 (MAS) NMR 光谱学研究。病毒通过调节其结构和动力学来控制其生命周期和感染力。虽然现在可以用接近原子级分辨率获得几种病毒衣壳的静态结构,但对于组装衣壳中功能重要的运动的原子级理解还缺乏。我们观察到高达 64 倍的 DNP 信号增强,这使得对这些组装体进行深入分析成为可能。对于 HIV-1 CA 组装体,在 3D 和 2D 异核数据集中的极高光谱分辨率允许分配大量的骨架和侧链共振。使用集成的 DNP MAS NMR 和分子动力学 (MD) 模拟方法,在低温下对组装衣壳所采样的构象空间进行了映射。定性地,实验 C/N 化学位移分布与 MD 轨迹上的子结构计算结果之间存在显著的一致性。在生理温度下移动的残基在低温条件下被冻结在多个构象中,导致实验和计算的化学位移分布广泛。总体而言,我们的结果表明,DNP MAS NMR 测量与 MD 模拟相结合,有助于深入了解病毒衣壳的动态特征。