Suppr超能文献

利用容积 MRI 数据区分健康对照参与者和轻度认知障碍患者。

Differentiating Between Healthy Control Participants and Those with Mild Cognitive Impairment Using Volumetric MRI Data.

机构信息

Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.

Center for Biomedical Imaging, Boston University School of Medicine, Boston, Massachusetts, USA.

出版信息

J Int Neuropsychol Soc. 2019 Sep;25(8):800-810. doi: 10.1017/S135561771900047X. Epub 2019 May 27.

Abstract

OBJECTIVE

To determine whether volumetric measures of the hippocampus, entorhinal cortex, and other cortical measures can differentiate between cognitively normal individuals and subjects with mild cognitive impairment (MCI).

METHOD

Magnetic resonance imaging (MRI) data from 46 cognitively normal subjects and 50 subjects with MCI as part of the Boston University Alzheimer's Disease Center research registry and the Alzheimer's Disease Neuroimaging Initiative were used in this cross-sectional study. Cortical, subcortical, and hippocampal subfield volumes were generated from each subject's MRI data using FreeSurfer v6.0. Nominal logistic regression models containing these variables were used to identify subjects as control or MCI.

RESULTS

A model containing regions of interest (superior temporal cortex, caudal anterior cingulate, pars opercularis, subiculum, precentral cortex, caudal middle frontal cortex, rostral middle frontal cortex, pars orbitalis, middle temporal cortex, insula, banks of the superior temporal sulcus, parasubiculum, paracentral lobule) fit the data best (R2 = .7310, whole model test chi-square = 97.16, p < .0001).

CONCLUSIONS

MRI data correctly classified most subjects using measures of selected medial temporal lobe structures in combination with those from other cortical areas, yielding an overall classification accuracy of 93.75%. These findings support the notion that, while volumes of medial temporal lobe regions differ between cognitively normal and MCI subjects, differences that can be used to distinguish between these two populations are present elsewhere in the brain.

摘要

目的

确定海马体、内嗅皮层和其他皮质体积测量是否可以区分认知正常个体和轻度认知障碍(MCI)患者。

方法

本横断面研究使用了来自波士顿大学阿尔茨海默病中心研究注册处和阿尔茨海默病神经影像学倡议的 46 名认知正常受试者和 50 名 MCI 受试者的磁共振成像(MRI)数据。使用 FreeSurfer v6.0 从每位受试者的 MRI 数据中生成皮质、皮质下和海马亚区体积。包含这些变量的名义逻辑回归模型用于将受试者识别为对照组或 MCI。

结果

包含感兴趣区域(颞上回、后扣带回皮质、额下回、下托、中央前回、中额下回、额中回、眶额回、颞中回、岛叶、颞上沟bank、下托、旁中央小叶)的模型最适合数据(R2=.7310,整体模型检验卡方=97.16,p<.0001)。

结论

使用选定的内侧颞叶结构的测量值与其他皮质区域的测量值相结合,MRI 数据正确分类了大多数受试者,总体分类准确性为 93.75%。这些发现支持了这样一种观点,即虽然内侧颞叶区域的体积在认知正常和 MCI 受试者之间存在差异,但可以用于区分这两个群体的差异存在于大脑的其他部位。

相似文献

1
Differentiating Between Healthy Control Participants and Those with Mild Cognitive Impairment Using Volumetric MRI Data.
J Int Neuropsychol Soc. 2019 Sep;25(8):800-810. doi: 10.1017/S135561771900047X. Epub 2019 May 27.
6
MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease.
Neuroimage. 2012 Apr 15;60(3):1622-9. doi: 10.1016/j.neuroimage.2012.01.075. Epub 2012 Jan 25.
8
Structural neuroimaging correlates of cognitive status in older adults: A person-oriented approach.
J Clin Neurosci. 2016 Aug;30:77-82. doi: 10.1016/j.jocn.2016.01.025. Epub 2016 Apr 4.
10
Exploring Structural and Functional Brain Changes in Mild Cognitive Impairment: A Whole Brain ALE Meta-Analysis for Multimodal MRI.
ACS Chem Neurosci. 2019 Jun 19;10(6):2823-2829. doi: 10.1021/acschemneuro.9b00045. Epub 2019 May 16.

引用本文的文献

3
An Optimized Deep Learning Model for Predicting Mild Cognitive Impairment Using Structural MRI.
Sensors (Basel). 2023 Jun 16;23(12):5648. doi: 10.3390/s23125648.
4
Volume changes of hippocampal and amygdala subfields in patients with mild cognitive impairment and Alzheimer's disease.
Acta Neurol Belg. 2023 Aug;123(4):1381-1393. doi: 10.1007/s13760-023-02235-9. Epub 2023 Apr 12.
5
Aberrant Changes in Cortical Complexity in Right-Onset Versus Left-Onset Parkinson's Disease in Early-Stage.
Front Aging Neurosci. 2021 Nov 8;13:749606. doi: 10.3389/fnagi.2021.749606. eCollection 2021.
6
Quantitative Analysis of Synthetic Magnetic Resonance Imaging in Alzheimer's Disease.
Front Aging Neurosci. 2021 Apr 12;13:638731. doi: 10.3389/fnagi.2021.638731. eCollection 2021.

本文引用的文献

2
On the path to 2025: understanding the Alzheimer's disease continuum.
Alzheimers Res Ther. 2017 Aug 9;9(1):60. doi: 10.1186/s13195-017-0283-5.
3
Screening Utility of the King-Devick Test in Mild Cognitive Impairment and Alzheimer Disease Dementia.
Alzheimer Dis Assoc Disord. 2017 Apr-Jun;31(2):152-158. doi: 10.1097/WAD.0000000000000157.
4
Brain atrophy in Alzheimer's Disease and aging.
Ageing Res Rev. 2016 Sep;30:25-48. doi: 10.1016/j.arr.2016.01.002. Epub 2016 Jan 28.
5
Entorhinal cortex: a good biomarker of mild cognitive impairment and mild Alzheimer's disease.
Rev Neurosci. 2016 Feb;27(2):185-95. doi: 10.1515/revneuro-2015-0019.
6
Structural imaging of hippocampal subfields in healthy aging and Alzheimer's disease.
Neuroscience. 2015 Nov 19;309:29-50. doi: 10.1016/j.neuroscience.2015.08.033. Epub 2015 Aug 22.
10
The intersection of amyloid beta and tau at synapses in Alzheimer's disease.
Neuron. 2014 May 21;82(4):756-71. doi: 10.1016/j.neuron.2014.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验