Suppr超能文献

相似文献

1
Channelized Hotelling observer correlation with human observers for low-contrast detection in liver CT images.
J Med Imaging (Bellingham). 2019 Apr;6(2):025501. doi: 10.1117/1.JMI.6.2.025501. Epub 2019 May 20.
9
Objective assessment of low contrast detectability in computed tomography with Channelized Hotelling Observer.
Phys Med. 2016 Jan;32(1):76-83. doi: 10.1016/j.ejmp.2015.09.011. Epub 2015 Oct 26.
10
Toward image quality assessment in mammography using model observers: Detection of a calcification-like object.
Med Phys. 2017 Nov;44(11):5726-5739. doi: 10.1002/mp.12532. Epub 2017 Oct 13.

本文引用的文献

3
Anthropomorphic model observer performance in three-dimensional detection task for low-contrast computed tomography.
J Med Imaging (Bellingham). 2016 Jan;3(1):011009. doi: 10.1117/1.JMI.3.1.011009. Epub 2015 Dec 29.
4
Objective assessment of low contrast detectability in computed tomography with Channelized Hotelling Observer.
Phys Med. 2016 Jan;32(1):76-83. doi: 10.1016/j.ejmp.2015.09.011. Epub 2015 Oct 26.
5
Low contrast detectability performance of model observers based on CT phantom images: kVp influence.
Phys Med. 2015 Nov;31(7):798-807. doi: 10.1016/j.ejmp.2015.04.012. Epub 2015 May 13.
6
A generic framework to simulate realistic lung, liver and renal pathologies in CT imaging.
Phys Med Biol. 2014 Nov 7;59(21):6637-57. doi: 10.1088/0031-9155/59/21/6637. Epub 2014 Oct 17.
7
Exact confidence intervals for channelized Hotelling observer performance in image quality studies.
IEEE Trans Med Imaging. 2015 Feb;34(2):453-64. doi: 10.1109/TMI.2014.2360496. Epub 2014 Sep 26.
9
Model observers in medical imaging research.
Theranostics. 2013 Oct 4;3(10):774-86. doi: 10.7150/thno.5138.
10
Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection.
Phys Med Biol. 2013 Oct 21;58(20):7159-82. doi: 10.1088/0031-9155/58/20/7159. Epub 2013 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验