Suppr超能文献

大规模多因素似然定量分析 BRCA1 和 BRCA2 变体:支持临床变异分类的 ENIGMA 资源。

Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification.

机构信息

Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

Cancer Control and Population Science, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.

出版信息

Hum Mutat. 2019 Sep;40(9):1557-1578. doi: 10.1002/humu.23818.

Abstract

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.

摘要

多因素似然分析方法已被证明可用于对多种癌症综合征基因的变异致病性进行定量评估。目前,用于评估 BRCA1 和 BRCA2 变异的模型中纳入了独立的数据类型,包括基于变异位置和变异效应的生物信息预测校准的临床致病性先验概率、共分离、家族癌症史特征、与同一基因中的致病性变异同时发生、乳腺肿瘤病理学和病例对照信息。为 1395 个主要为 BRCA1/2 内含子和错义变异,整理了多因素似然分析的研究和临床数据,使得 734 个变异能够基于致病性后验概率进行分类:447 个变异被分类为(可能)良性,94 个变异被分类为(可能)致病性;并且与 ClinVar 提交的结果相比,有 248 个分类是新的或有较大改变。将分类与尚未包含在似然模型中的信息进行比较,并根据与 ACMG/AMP 分类代码一致的证据强度进行对齐。与已知非致病性变异对照相比,mRNA 剪接或功能改变与变异致病性中度至高度相关。在人群数据集缺失的变异为变异致病性提供了支持证据。这些发现与 BRCA1 和 BRCA2 变异评估直接相关,并证明了针对特定基因的证据类型进行变异分类校准的必要性。

相似文献

3
Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members.
Breast Cancer Res Treat. 2012 Apr;132(3):1009-23. doi: 10.1007/s10549-011-1674-0. Epub 2011 Jul 19.
7
Reclassification of and variants of uncertain significance: a multifactorial analysis of multicentre prospective cohort.
J Med Genet. 2018 Dec;55(12):794-802. doi: 10.1136/jmedgenet-2018-105565. Epub 2018 Nov 10.
8
10
Ovarian cancer pathology characteristics as predictors of variant pathogenicity in BRCA1 and BRCA2.
Br J Cancer. 2023 Jun;128(12):2283-2294. doi: 10.1038/s41416-023-02263-5. Epub 2023 Apr 19.

引用本文的文献

8
Saturation genome editing-based clinical classification of BRCA2 variants.
Nature. 2025 Feb;638(8050):538-545. doi: 10.1038/s41586-024-08349-1. Epub 2025 Jan 8.
9
Reinterpretation of Conflicting ClinVar Missense Variants Using VarSome and CanVIG-UK Gene-Specific Guidance.
Diagnostics (Basel). 2024 Dec 14;14(24):2821. doi: 10.3390/diagnostics14242821.

本文引用的文献

1
Assessment of blind predictions of the clinical significance of BRCA1 and BRCA2 variants.
Hum Mutat. 2019 Sep;40(9):1546-1556. doi: 10.1002/humu.23861. Epub 2019 Aug 23.
2
Towards controlled terminology for reporting germline cancer susceptibility variants: an ENIGMA report.
J Med Genet. 2019 Jun;56(6):347-357. doi: 10.1136/jmedgenet-2018-105872. Epub 2019 Apr 8.
4
State-of-the-art strategies for targeting the DNA damage response in cancer.
Nat Rev Clin Oncol. 2019 Feb;16(2):81-104. doi: 10.1038/s41571-018-0114-z.
8
Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of BRCT Variants on Cancer Risk.
Mol Cancer Res. 2019 Jan;17(1):54-69. doi: 10.1158/1541-7786.MCR-17-0357. Epub 2018 Sep 26.
10
Accurate classification of BRCA1 variants with saturation genome editing.
Nature. 2018 Oct;562(7726):217-222. doi: 10.1038/s41586-018-0461-z. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验