Suppr超能文献

多形古菌的分裂面位置与细胞形状呈动态耦合。

Division plane placement in pleomorphic archaea is dynamically coupled to cell shape.

机构信息

School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.

The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

出版信息

Mol Microbiol. 2019 Sep;112(3):785-799. doi: 10.1111/mmi.14316. Epub 2019 Jun 11.

Abstract

One mechanism for achieving accurate placement of the cell division machinery is via Turing patterns, where nonlinear molecular interactions spontaneously produce spatiotemporal concentration gradients. The resulting patterns are dictated by cell shape. For example, the Min system of Escherichia coli shows spatiotemporal oscillation between cell poles, leaving a mid-cell zone for division. The universality of pattern-forming mechanisms in divisome placement is currently unclear. We examined the location of the division plane in two pleomorphic archaea, Haloferax volcanii and Haloarcula japonica, and showed that it correlates with the predictions of Turing patterning. Time-lapse analysis of H. volcanii shows that divisome locations after successive rounds of division are dynamically determined by daughter cell shape. For H. volcanii, we show that the location of DNA does not influence division plane location, ruling out nucleoid occlusion. Triangular cells provide a stringent test for Turing patterning, where there is a bifurcation in division plane orientation. For the two archaea examined, most triangular cells divide as predicted by a Turing mechanism; however, in some cases multiple division planes are observed resulting in cells dividing into three viable progeny. Our results suggest that the division site placement is consistent with a Turing patterning system in these archaea.

摘要

实现细胞分裂机制精确定位的一种机制是图灵模式,其中非线性分子相互作用会自发产生时空浓度梯度。由此产生的模式由细胞形状决定。例如,大肠杆菌的 Min 系统在细胞两极之间表现出时空振荡,从而在细胞中部留下用于分裂的区域。目前,关于分裂体定位中模式形成机制的普遍性尚不清楚。我们研究了两种多形古菌(Haloferax volcanii 和 Haloarcula japonica)中分裂平面的位置,并表明其与图灵模式形成的预测一致。对 H. volcanii 的延时分析表明,在连续分裂的轮次中,分裂体的位置是由子细胞的形状动态决定的。对于 H. volcanii,我们表明 DNA 的位置不会影响分裂平面的位置,从而排除了拟核阻塞。三角形细胞为图灵模式提供了严格的测试,其中分裂平面的方向发生了分叉。对于所研究的两种古菌,大多数三角形细胞都按照图灵机制进行分裂;然而,在某些情况下,观察到多个分裂平面,导致细胞分裂成三个有活力的后代。我们的结果表明,在这些古菌中,分裂位点的定位与图灵模式系统一致。

相似文献

1
Division plane placement in pleomorphic archaea is dynamically coupled to cell shape.
Mol Microbiol. 2019 Sep;112(3):785-799. doi: 10.1111/mmi.14316. Epub 2019 Jun 11.
3
The archaeal protein SepF is essential for cell division in Haloferax volcanii.
Nat Commun. 2021 Jun 8;12(1):3469. doi: 10.1038/s41467-021-23686-9.
4
Improved growth and morphological plasticity of .
Microbiology (Reading). 2021 Feb;167(2). doi: 10.1099/mic.0.001012.
5
Overexpression and purification of halophilic proteins in Haloferax volcanii.
Bioeng Bugs. 2010 Jul-Aug;1(4):288-90. doi: 10.4161/bbug.1.4.11794. Epub 2010 Mar 17.
6
CetZ tubulin-like proteins control archaeal cell shape.
Nature. 2015 Mar 19;519(7543):362-5. doi: 10.1038/nature13983. Epub 2014 Dec 22.
7
Archaeal Tubulin-like Proteins Modify Cell Shape in during Early Biofilm Development.
Genes (Basel). 2023 Sep 25;14(10):1861. doi: 10.3390/genes14101861.
10
CdrS Is a Global Transcriptional Regulator Influencing Cell Division in Haloferax volcanii.
mBio. 2021 Aug 31;12(4):e0141621. doi: 10.1128/mBio.01416-21. Epub 2021 Jul 13.

引用本文的文献

1
Halofilins as emerging bactofilin families of archaeal cell shape plasticity orchestrators.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2401583121. doi: 10.1073/pnas.2401583121. Epub 2024 Sep 25.
2
The Archaeal Cell Cycle.
Annu Rev Cell Dev Biol. 2024 Oct;40(1):1-23. doi: 10.1146/annurev-cellbio-111822-120242. Epub 2024 Sep 21.
3
Location of the axon initial segment assembly can be predicted from neuronal shape.
iScience. 2024 Feb 17;27(3):109264. doi: 10.1016/j.isci.2024.109264. eCollection 2024 Mar 15.
4
Forceful patterning: theoretical principles of mechanochemical pattern formation.
EMBO Rep. 2023 Dec 6;24(12):e57739. doi: 10.15252/embr.202357739. Epub 2023 Nov 2.
5
"Influence of plasmids, selection markers and auxotrophic mutations on cell shape plasticity".
Front Microbiol. 2023 Sep 29;14:1270665. doi: 10.3389/fmicb.2023.1270665. eCollection 2023.
6
The cell biology of archaea.
Nat Microbiol. 2022 Nov;7(11):1744-1755. doi: 10.1038/s41564-022-01215-8. Epub 2022 Oct 17.
7
Progress and Challenges in Archaeal Cell Biology.
Methods Mol Biol. 2022;2522:365-371. doi: 10.1007/978-1-0716-2445-6_24.
8
The Viral Susceptibility of the Species.
Viruses. 2022 Jun 20;14(6):1344. doi: 10.3390/v14061344.
9
High-Temperature Live-Cell Imaging of Cytokinesis, Cell Motility, and Cell-Cell Interactions in the Thermoacidophilic Crenarchaeon .
Front Microbiol. 2021 Aug 10;12:707124. doi: 10.3389/fmicb.2021.707124. eCollection 2021.
10
Open Issues for Protein Function Assignment in and Other Halophilic Archaea.
Genes (Basel). 2021 Jun 24;12(7):963. doi: 10.3390/genes12070963.

本文引用的文献

1
Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis.
Curr Opin Cell Biol. 2018 Feb;50:27-34. doi: 10.1016/j.ceb.2018.01.007. Epub 2018 Feb 10.
2
Archaeal cells share common size control with bacteria despite noisier growth and division.
Nat Microbiol. 2018 Feb;3(2):148-154. doi: 10.1038/s41564-017-0082-6. Epub 2017 Dec 18.
3
Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli.
PLoS One. 2017 Oct 17;12(10):e0185947. doi: 10.1371/journal.pone.0185947. eCollection 2017.
4
Asgard archaea illuminate the origin of eukaryotic cellular complexity.
Nature. 2017 Jan 19;541(7637):353-358. doi: 10.1038/nature21031. Epub 2017 Jan 11.
5
Mapping out Min protein patterns in fully confined fluidic chambers.
Elife. 2016 Nov 25;5:e19271. doi: 10.7554/eLife.19271.
7
Pattern formation on membranes and its role in bacterial cell division.
Curr Opin Cell Biol. 2016 Feb;38:52-9. doi: 10.1016/j.ceb.2016.02.005. Epub 2016 Feb 23.
8
Geometry-induced protein pattern formation.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):548-53. doi: 10.1073/pnas.1515191113. Epub 2016 Jan 6.
9
Symmetry and scale orient Min protein patterns in shaped bacterial sculptures.
Nat Nanotechnol. 2015 Aug;10(8):719-26. doi: 10.1038/nnano.2015.126. Epub 2015 Jun 22.
10
The Min system and other nucleoid-independent regulators of Z ring positioning.
Front Microbiol. 2015 May 13;6:478. doi: 10.3389/fmicb.2015.00478. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验