Caspi Yaron, Dekker Cees
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
Elife. 2016 Nov 25;5:e19271. doi: 10.7554/eLife.19271.
The bacterial Min protein system provides a major model system for studying reaction-diffusion processes in biology. Here we present the first study of the Min system in fully confined three-dimensional chambers that are lithography-defined, lipid-bilayer coated and isolated through pressure valves. We identify three typical dynamical behaviors that occur dependent on the geometrical chamber parameters: pole-to-pole oscillations, spiral rotations, and traveling waves. We establish the geometrical selection rules and show that, surprisingly, Min-protein spiral rotations govern the larger part of the geometrical phase diagram. Confinement as well as an elevated temperature reduce the characteristic wavelength of the Min patterns, although even for confined chambers with a bacterial-level viscosity, the patterns retain a ~5 times larger wavelength than . Our results provide an essential experimental base for modeling of intracellular Min gradients in bacterial cell division as well as, more generally, for understanding pattern formation in reaction-diffusion systems.
细菌Min蛋白系统为研究生物学中的反应扩散过程提供了一个主要的模型系统。在此,我们首次对Min系统在完全受限的三维腔室中进行了研究,这些腔室是通过光刻定义、脂质双层包被并通过压力阀隔离的。我们识别出三种典型的动力学行为,它们取决于几何腔室参数:极到极振荡、螺旋旋转和行波。我们建立了几何选择规则,并表明,令人惊讶的是,Min蛋白螺旋旋转在几何相图中占较大部分。限制以及升高的温度会降低Min模式的特征波长,尽管即使对于具有细菌水平粘度的受限腔室,这些模式的波长仍比……大~5倍。我们的结果为模拟细菌细胞分裂中细胞内Min梯度以及更广泛地理解反应扩散系统中的模式形成提供了重要的实验基础。