Bhushan Nitin, Mohnert Florian, Sloot Daniel, Jans Lise, Albers Casper, Steg Linda
Department of Psychometrics and Statistics, University of Groningen, Groningen, Netherlands.
Faculty of Science, Informatics Institute, Universiteit van Amsterdam, Amsterdam, Netherlands.
Front Psychol. 2019 May 9;10:1050. doi: 10.3389/fpsyg.2019.01050. eCollection 2019.
Exploratory analyses are an important first step in psychological research, particularly in problem-based research where various variables are often included from multiple theoretical perspectives not studied together in combination before. Notably, exploratory analyses aim to give first insights into how items and variables included in a study relate to each other. Typically, exploratory analyses involve computing bivariate correlations between items and variables and presenting them in a table. While this is suitable for relatively small data sets, such tables can easily become overwhelming when datasets contain a broad set of variables from multiple theories. We propose the Gaussian graphical model as a novel exploratory analyses tool and present a systematic roadmap to apply this model to explore relationships between items and variables in environmental psychology research. We demonstrate the use and value of the Gaussian graphical model to study relationships between a broad set of items and variables that are expected to explain the effectiveness of community energy initiatives in promoting sustainable energy behaviors.
探索性分析是心理学研究中重要的第一步,特别是在基于问题的研究中,此类研究通常会从多个理论视角纳入各种变量,而这些变量以前并未一起进行综合研究。值得注意的是,探索性分析旨在初步洞察研究中包含的项目和变量之间的相互关系。通常,探索性分析包括计算项目与变量之间的双变量相关性,并将其呈现于表格中。虽然这适用于相对较小的数据集,但当数据集包含来自多个理论的大量变量时,此类表格很容易变得让人应接不暇。我们提出将高斯图形模型作为一种新颖的探索性分析工具,并给出一个系统的路线图,以应用此模型来探索环境心理学研究中项目与变量之间的关系。我们展示了高斯图形模型在研究一系列广泛的项目与变量之间关系时的用途和价值,这些项目与变量有望解释社区能源倡议在促进可持续能源行为方面的有效性。