Jones Payton J, Mair Patrick, McNally Richard J
Department of Psychology, Harvard University, Cambridge, MA, United States.
Front Psychol. 2018 Sep 19;9:1742. doi: 10.3389/fpsyg.2018.01742. eCollection 2018.
Networks have emerged as a popular method for studying mental disorders. Psychopathology networks consist of aspects (e.g., symptoms) of mental disorders (nodes) and the connections between those aspects (edges). Unfortunately, the visual presentation of networks can occasionally be misleading. For instance, researchers may be tempted to conclude that nodes that appear close together are highly related, and that nodes that are far apart are less related. Yet this is not always the case. In networks plotted with force-directed algorithms, the most popular approach, the spatial arrangement of nodes is not easily interpretable. However, other plotting approaches can render node positioning interpretable. We provide a brief tutorial on several methods including multidimensional scaling, principal components plotting, and eigenmodel networks. We compare the strengths and weaknesses of each method, noting how to properly interpret each type of plotting approach.
网络已成为研究精神障碍的一种流行方法。精神病理学网络由精神障碍的各个方面(如症状)(节点)以及这些方面之间的联系(边)组成。不幸的是,网络的可视化呈现有时可能会产生误导。例如,研究人员可能会倾向于得出这样的结论:看起来靠得很近的节点高度相关,而相距很远的节点相关性较低。然而,情况并非总是如此。在使用最流行的力导向算法绘制的网络中,节点的空间排列不容易解释。但是,其他绘图方法可以使节点定位具有可解释性。我们提供了关于几种方法的简要教程,包括多维缩放、主成分绘图和特征模型网络。我们比较了每种方法的优缺点,并指出如何正确解释每种类型的绘图方法。